首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petrological and geochemical characteristics of the granites from the Khanak and Devsar areas have been discussed in this paper. Based on field, petrographical and geochemical observations, three types of granites (grey, green and pink granite) have been identified in these areas. Grey granites consist of quartz, plagioclase, biotite, hornblende as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. Petrographically, green granites are same as grey granites including perthite and zircon as accessory minerals. Pink granites consist of quartz, k-feldspar and biotite in Khanak whereas in Devsar granites alike as Khanak granites, but plagioclase is replaced by perthite and occurs as dominantly. Microscopically, granites of both areas show porphyritic, hypidiomorphic, granophyric, perthitic and micro granophyric textures. Geochemically, major oxide elements (except alkalies) and trace elements (Ba, Sr, Cr, Ni, V, Cu, Zn, Ga, Pb, Th and Zr) are more in green and grey granites of Khanak and Devsar areas than pink granites. Generally, they show enrichments in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y and and AI (Agpaitic Index) (ranges from 0.10 to 1.18) and depletion in MgO, CaO, P, Ti, Ni, Cr and V indicate their A-type affinity which is very similar to the A-type granites of MIS (Malani igneous suite) in northwestern peninsular India. Green and grey granites of Devsar area show high concentrations of Heat production (HP) 9.68 & 11.70 μWm-3 and total Heat Generation Unit (HGU) i.e 23.04 & 27.86 respectively. On the other hand, pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than those granites of Devsar area. Overall, they have much a higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship with the surface heat flow and crustal heat generation in the rocks of MIS. From the petrography as well as the chemistry of Khanak and Devsar granites, it is suggested that they might have derived from the different degree of partial melting from the similar source of magma.  相似文献   

2.
The zircon SHRIMP dating age for the Shangyou granites is 464±11 Ma. The geological feature of the pluton is consistent with the isotopic age, which shows that it is a product of Caledonian orogenesis. The Shangyou granites are regarded as peraluminous crust-derived granites to possess the typical geochemical characteristics of calc-alkaline rocks on the active continental margin with enriched Si, K, Al (A/CNK -- 1.11 on average), HREE, Rb, U, Th and heavily depleted V, Cr, Co, Ni, as well as Ti-Y, Nb-Ta, Zr, Sr, P and Ba, to be commonly corundum normative (av C -- 1.44). The Shangyou granites with higher 87Sr/86Sr ratios (0.707126-0.712186), ENd(t) values (-7.29 to -10.22) and (tDM) values (1.52-1.63 Ga), which are considered to result from partial melting of continental crust metamorphic sedimentary rocks with relatively low of crust maturation degree corresponding to the Middle Proterozoic, to have some possible contributions of mantle-derived components. The Shangyou granites are regarded as post-collision granites, which were formed in a transitional tectonic setting from compression to extension in the Middle Ordovician period after the Yangtze plate was subducted beneath the Cathaysian plate. The Ar-Ar total ages of K-feldspar and biotite are 292.1 Ma and 295.5 Ma respectively, which have recorded information of a late-stage thermal alteration event.  相似文献   

3.
中国大陆地壳铅同位素演化的动力学模型   总被引:29,自引:9,他引:29  
根据中国大陆中、新生代花岗岩长铅同位素数据库,沿用“铅构造模型”的基本思想并作部分改进,建立了中国大陆地壳铅同位素的动力学演化模型。与全球平均的铅同位素演化曲线相比,中国大陆地壳的原始物质相对较贫铀富钍,并且中国大陆的上地壳和下地壳在演化过程中分异得更加彻底。将本模型应用于大别地区中生代花岗岩长石铅同位素数据,结果发现它们具有壳幔铅混合的特征,并且以上下地壳物质混合产生的类地幔铅为主,花岗岩源岩中含有较高的富Th下地壳组分。  相似文献   

4.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   

5.
The Li isotopic composition of the upper continental crust is estimated from the analyses of well-characterized shales, loess, granites and upper crustal composites (51 samples in total) from North America, China, Europe, Australia and New Zealand. Correlations between Li, δ7Li, and chemical weathering (as measured by the Chemical Index of Alteration (CIA)), and δ7Li and the clay content of shales (as measured by Al2O3/SiO2), reflect uptake of heavy Li from the hydrosphere by clays. S-type granites from the Lachlan fold belt (-1.1 to -1.4‰) have δ7Li indistinguishable from their associated sedimentary rocks (-0.7 to 1.2‰), and show no variation in δ7Li throughout the differentiation sequence, suggesting that isotopic fractionation during crustal anatexis and subsequent differentiation is less than analytical uncertainty (±1‰, 2σ). The isotopically light compositions for both I- and S-type granites from the Lachlan fold belt (-2.5 to + 2.7 ‰) and loess from around the world (-3.1 to + 4.5‰) reflect the influence of weathering in their source regions. Collectively, these lithologies possess a limited range of Li isotopic compositions (δ7Li of −5‰ to + 5‰), with an average (δ7Li of 0 ± 2‰ at 1σ) that is representative of the average upper continental crust. Thus, the Li isotopic composition of the upper continental crust is lighter than the average upper mantle (δ7Li of + 4 ± 2‰), reflecting the influence of weathering on the upper crustal composition. The concentration of Li in the upper continental crust is estimated to be 35 ± 11 ppm (2σ), based on the average loess composition and correlations between insoluble elements (Ti, Nb, Ta, Ga and Al2O3, Th and HREE) and Li in shales. This value is somewhat higher than previous estimates (∼20 ppm), but is probably indistinguishable when uncertainties in the latter are accounted for.  相似文献   

6.
The Anorogenic Malani Felsic Province (MFP) of western Peninsular India consists of peralkaline, metaluminous to mildly peraluminous A-type granites-acid volcanics with minor basic volcanics and dykes. The suite is bimodal in nature that characterized by volcano-plutonic ring structures and radial dykes. The granitoids of Siwana and Kundal areas of MFP are traversed by numerous quartz veins with fluoride, iron encrustations, druses and knots of pegmatite phases. Petrographically, they show cloudy, patchy perthitic textures; spherulite form of alkali amphibole and alkali pyroxenes; alteration of K-Na-feldspar to kaolin/sericite, magnetite to haematite; growth of granophyres/perthite/rapakivi like textures. They are enriched in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y, Ga, REE (except Eu) and depleted in MgO, CaO, Mg#, P, Ti, Sr, Ni, Cr, Co and V. Uniform REE patterns, parallel to sub-parallel, LREE enriched over HREE and prominent negative Eu-anomalies are the characteristics of these granitoids. Geochemical parameters satisfy the A-type nature of granitoids and crustal origin of these rocks. These granitoids are high heat producing granitoids because of their high content of radioactive elements (U, Th, K), and can be classified as granite (Type I) (avg. 7.18 μWm−3), rhyolite and trachyte (Type II) (avg. 4.47 μWm−3) and acid dyke (Type III) (avg. 14.53 μ Wm−3). The average total heat generation unit (HGU) of Type I (17.10 HGU), Type II (10.64 HGU) and Type III (35.31 HGU) are much higher than the average value of continental crust (3.8 HGU), which imply a possible linear relationship among the surface heat generations in the MFP. Field, petrography and whole rock geochemical characteristics suggest potentiality for rare metals and rare earth elements mineralization in the studied granitoids of the MFP.  相似文献   

7.
We report geochronologic, whole‐rock geochemical and Sr–Nd isotopic analyses of the granites that are exposed to both the north and the inside of the Bangong–Nujiang Suture (BNS) zone as well as the implications for the Mesozoic history of Tibet. To the north of the BNS, the Larelaxin pluton consists of I‐type quartz diorite and highly fractionated I‐type biotite granite. The Larelaxin pluton is enriched in large‐ion lithophile elements (LILE) but depleted in high‐field‐strength elements (HFSE); therefore, it exhibits the features of volcanic arc rocks. The initial Sr (0.7102 to 0.7215) and negative εNd (t) (−2.91 to −5.20) values imply a mixture of depleted mantle and continental crust. The mean 206Pb/238U zircon age is 168 Ma; we therefore propose that the Bangong–Nujiang Ocean (BNO) had already been subducted beneath the Qiangtang terrain by the middle Jurassic. Inside the BNS, the Rutog granites intruded into the Lagongtang and Duoren formations, which show a continental margin and a forearc basin sedimentary facies, respectively. The mean 206Pb/238U zircon age is 101 Ma. The Rutog granites are monzogranites with a high Na/K ratio (Na2O/K2O > 1) and a high LILE/HFSE ratio, and A/CNK < 1.1. The high Sr/Y ratio (22 to 56) implies that these granites are adakitic. The low initial Sr (0.7044 to 0.7055) and positive εNd (t) (+1.46 to +2.70) values indicate that the protolith of the Rutog granites originated mainly from a depleted source. We attribute the Rutog plutonism to the development of an oceanic arc during the continuing northward subduction of the BNO and propose that the Rutog adakitic granites were formed by melting of the subducted BNO crust with limited crustal contamination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A Precambrian granulite terrain of the Brazilian shield presents an average Tl content of 350 ppb, very near to Shaw's figure for the lower continental crust. Thallium, as in other rock types, shows close coherence with Rb and K. The mean Rb/Tl value (193 for 53 samples) falls in the range of the ‘normal’ crustal values, while the K/Tl values (145,000 average) are higher than values for igneous rocks, as are the values for K/Rb. The results support the authors' hypothesis that granulitic rocks have undergone partial melting with contemporaneous depletion of Rb and Tl in relation to K.  相似文献   

9.
赋存于花岗岩中的金矿床在我国金矿资源中的地位极其重要,并形成我国独具特色的金矿类型。我国含金花岗岩的时代,绝大多数为燕山期,其次是华力西-印支期及加里东期;含金花岗岩体分布广泛,特别集中出露在中朝板块东缘的胶东地体内和北缘广大地区,在北方陆壳增生区及华南扬子板块内亦有分布;研究表明,含金花岗岩类以Ⅰ型花岗岩为主,其次是A型和S型;在同一地区含金花岗岩的金丰度明显高于不含金花岗岩。  相似文献   

10.
铅同位素动力学模型及其在示踪花岗岩成因中的应用   总被引:4,自引:0,他引:4  
李龙 《地学前缘》2000,7(2):413-429
介绍了壳幔铅混合模式和铅连续生长模式 ,并首次将这两个模式推广到花岗岩成因研究中。通过对世界上一些花岗岩体中长石铅同位素数据的壳幔混合模式计算 ,发现在约 3 1Ga时曾发生过一次全球性的大规模U ,Pb分异事件。将铅连续生长模式计算结果与其它一些一致性信息对比发现 ,该模式对示踪花岗岩的源区时代非常敏感。对以地壳铅为主的花岗岩 ,其铅连续生长模式年龄与其成岩年龄相当 ;而对造山带花岗岩 ,两者之间的关系具有不确定性。对中国南、北秦岭和大别—苏鲁造山带花岗岩中长石铅同位素数据的计算结果对比表明 ,即使属于同一个造山带的岩体 ,其铅的来源和演化历史也存在较大的差别。此外 ,青岛崂山碱性花岗岩的各种铅同位素性质与中国东部其它碱性花岗岩体存在差别 ,但与苏鲁地体花岗岩表现的铅同位素行为一致 ,表明崂山碱性花岗岩的成因与苏鲁花岗岩体的成因具有更强的相关性。  相似文献   

11.
中国东南部花岗岩成因与地壳演化   总被引:71,自引:0,他引:71  
王德滋  沈渭洲 《地学前缘》2003,10(3):209-220
中国东南部不同时代花岗岩类的分布十分广泛 ,各类花岗岩的出露面积达 2 0 0 0 0 0km2 以上。其中 ,前侏罗纪花岗岩大部分具有较低的ε(Nd ,t)、较高的Ni(87Sr) /Ni(86Sr)和较古老的Nd模式年龄 ,相似于周围的前寒武纪基底变质岩。因此 ,它们的主体属壳源型 ,其成因可能主要同华夏地块与扬子地块之间的多次碰撞拼贴有关 ,由当时被加厚的地壳在降压条件下部分熔融形成。燕山期花岗岩在中国东南部分布最广。其中 ,呈东西向展布的燕山早期花岗岩 (南岭花岗岩 )被认为是与印支运动有联系的后造山花岗岩组合 ,多数具壳源型特征。而主要分布于东南沿海的燕山晚期花岗岩则不同 ,它们具有较高的ε(Nd ,t)、较低的Ni(87Sr) /Ni(86Sr)和相对年轻的Nd模式年龄 ,反映其源区中含有较多的地幔组分。它们的形成可能同太平洋板块俯冲、玄武岩浆底侵以及由此引起的地壳深熔和壳幔混合有关。根据花岗岩的Nd模式年龄以及地壳岩石中继承锆石U Pb年龄 ,认为中国东南部地壳具幕式生长特征 ,古—中元古代为主要的生长期。  相似文献   

12.
Constancy of Nb/U in the mantle revisited   总被引:5,自引:0,他引:5  
It has long been proposed that MORB and OIB have constant supra-primitive mantle (PM) Nb/U values identical to each other. This fact together with complementary sub-PM values for the continental crust (CC), are taken as fundamental evidence, linking the mantle sources of MORB and OIB to the formation of the CC. Given that plate subduction at convergent margins is the major known process that dramatically fractionates Nb from U, and consequently that subducted oceanic slabs are the main primary carriers of supra-PM Nb/U, a constant supra-PM Nb/U in MORB mantle implies that the mixing of subducted oceanic crust is essentially finished or the newly recycled oceanic crust has Nb/U close to that of the mantle. The similarity between Nb and U as well as the constancy of Nb/U in MORB are revisited here based on MORB glass data obtained using laser ablation ICP-MS. The result shows that Nb/U is not correlated with Nb/Hf, supporting that Nb and U are similarly incompatible. Further investigation shows that Nb is not perfectly identical to, but is faintly more incompatible than U as indicated by the good correlation between log(U) and log(Nb) with a slope of 0.954, very close to 1. Nonetheless, the similarity between Nb and U is high enough, such that the average Nb/U value of MORB glasses should be very close to that of the MORB mantle. By contrast, the difference between Ce and Pb is more obvious. Ce is more incompatible than Pb with a slope of 1.13 in a log(Pb) versus log(Ce) diagram. Therefore, the Ce/Pb of MORB should be a little bit higher than that of the mantle source. The Nb/U value is not as uniform as expected for the similar incompatibility in studied MORB glasses, but varies by a factor of ∼2, suggesting that MORB mantle source is not yet homogenized in term of Nb/U. This indicates that the mixing back of subducted oceanic crust is still an ongoing process, i.e., subducted oceanic crust is recycling back after staying in the lower mantle for billions of years.  相似文献   

13.
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58–1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83–1.76 μg/g, 3.16–6.69 μg/g, and 1.0%–2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China’s continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.  相似文献   

14.
花岗岩研究与大陆动力学   总被引:26,自引:1,他引:26  
花岗岩是大陆地壳的主要物质组成之一 ,蕴含着探索大陆动力学的重要信息。成因研究特别是混合成因研究可以提供探索大陆结构、生长及壳幔相互作用演化的信息 ;花岗岩形成演化揭示了构造动力学演化、大陆动力学演化及壳幔相互作用演化的某些特点 ;岩浆上升、迁移是大陆内部能量传播、物质迁移和调整的一种形式 ;岩浆的聚集及岩体生产方式与大陆块体运动学、动力学密切相关 ;岩体定时、定位对大陆块体时空定位提供了限制条件 ;变形岩体可作为区域应变标志体和时间标志体 ,研究大陆的变形 ,并有助于古老块体早期构造的解析。这些研究涉及到大陆的形成、演化、内部物质再分配、热动力效应和构造变动等动力学等问题 ,是花岗岩研究与大陆动力学研究的结合点。  相似文献   

15.
The basement of the Zheltav sialic massif (Southern Kazakhstan) is composed of different metamorphic rocks united into the Anrakhai Complex. In the southeastern part of the massif, these rocks form a large antiform with the core represented by amphibole and clinopyroxene gneissic granite varieties. By their chemical composition, dominant amphibole (hastingsite) gneissic granites correspond to subalkaline granites, while their petroand geochemical properties make them close to A-type granites. The U–Pb geochronological study of accessory zircons yielded an age of 1841 ± 6 Ma, which corresponds to the crystallization age of melts parental for protoliths of amphibole gneissic granites of the Zheltav Massif. Thus, the structural–geological and geochronological data make it possible to define the Paleoproterozoic (Staterian) stage of anorogenic magmatism in the Precambrian history of the Zheltav Massif. The combined Sm–Nd isotopic—geochronological data and age estimates obtained for detrital zircons indicate the significant role of the Paleoproterozoic tectono-magmatic stage in the formation of the Precambrian continental crust of sialic massifs in Kazakhstan and northern Tien Shan.  相似文献   

16.
桂东北大宁岩体锆石SHRIMP年代学和地球化学研究   总被引:7,自引:1,他引:6       下载免费PDF全文
大宁岩体位于扬子板块与华夏板块结合带,岩性组合为二长闪长岩-花岗闪长岩-二长花岗岩-钾长花岗岩.岩体中广泛存在壳幔混合包体.本文利用锆石sHRIMPU-Pb法,获得大宁岩体成岩年龄上限为(419.1±6.4)Ma(MSWD=1.03),属加里东晚期.岩体的地球化学研究显示,大宁岩体属弱过铝高钾钙碱性岩石,富大离子亲石元素和轻稀土,显Nb、Ba、Sr、Eu组合异常.岩石具有较高的I_(Sr)值(0.7112~0.7196),较低的εNd(t)值(-6.77~-7.53)和T_(DM)值(1.40~1.71Ga).结合邻区加里东花岗岩壳幔混合特征,本文认为,大宁岩体为幔源岩浆底侵诱发的下地壳变砂屑岩部分熔融形成,形成过程中有显著的幔源组分加入.  相似文献   

17.
西昆仑塔什库尔干地块马尔洋一带发育一期中寒武世花岗质岩浆活动,岩石类型为片麻状花岗闪长岩和二长花岗岩,LA-ICP-MS锆石U-Pb测年表明,其侵入时代分别为(506.0±6.8)Ma和(514.0±9.3)Ma。岩石SiO2含量为67.83%~75.76%,具中高钾、准铝质-弱过铝质等特征;岩石稀土总量与平均陆壳相当(∑REE=90.85×10-6~186.10×10-6),轻、重稀土分馏程度较强((La/Yb)N=5.38~22.43),负Eu异常明显(δEu=0.42~0.71);微量元素以富集Rb、K、Ba、Th、U等大离子亲石元素和亏损Nb、Ta、P、Ti等高场强元素为特征。地质学及岩石地球化学特征指示该期花岗岩属准铝质到弱过铝质高分异Ⅰ型花岗岩,锆石饱和温度指示其为高温岩浆岩,总体具有壳幔混源的特征,富云包体指示壳源成分占有较大的比例。该期花岗岩与邻区中-晚寒武世中酸性侵入岩指示塔什库尔干-甜水海地块南缘很可能存在一条中寒武世以来的岩浆弧带,其可能为在原特提斯(有限)洋盆于中寒武世向北俯冲、消减背景下幔源物质上涌底侵加热古老陆壳进而发生部分熔融的产物。这也预示着塔什库尔干地区在经过震旦纪-早寒武世伸展裂解阶段之后,于中-晚寒武世其大地构造环境及地球动力学背景发生了重大转折。   相似文献   

18.
现有240个花岗岩体的Nd同位素资料表明,华南内陆花岗岩可能主要由地壳部分熔融成成。从壳源花岗岩提取源岩成分信息的方法是把这种花岗岩的同位素成分同出露的元古代弱变质地壳的相应资料作比较。野外关系说明,华南内陆花岗岩侵入毗邻的围岩,因此其形成深度应该出现在出露的深度大。。因为这些花岗岩的定位深度一般在5~15km之间,这些壳源花岗岩可能代表一种中地壳探度的熔融.它们的同位索成分应能提供在这一探度上地壳成分的信息。根据华南壳源花岗岩同出露的元古代弱变质地壳岩石的Sm—Nd同位素对比,华南内陆大部分地区在中地壳探度上存在中性至长英质成分的地壳,并且从早古生代到中生代不曾发生过明显变化。但是花岗岩浆的分异作用所导致的Sm、Nd分馏可能是亲石元素矿化的一个重要控制因素。  相似文献   

19.
三叠纪华南俯冲陆壳已经延伸到华北克拉通东南缘的蚌埠地区, 而该地区的俯冲陆壳是否经历超高压变质仍存在诸多争议。对华北克拉通东南缘蚌埠地区的侏罗纪花岗岩——荆山岩体中的暗色残留体、主体花岗岩以及细晶岩脉中的白云母进行岩相学观察、电子探针和拉曼光谱分析,结果表明荆山残留体和主体花岗岩中白云母颗粒较大且相对于一般花岗岩中原生的、次生的白云母具有较高的Si、Fe+Mg原子数和较低的Al原子数。拉曼光谱分析结果显示残留体和主体花岗岩中大颗粒白云母也具有相似的铝原子桥氧键(Al,O(br))的拉曼位移(421 cm-1),低于经历超高压的黄镇榴辉岩中多硅白云母的原子数和铝原子桥氧键的拉曼位移,而高于本研究中未经历超高压变质作用的奥地利Spail片岩中的白云母。残留体和花岗岩中大颗粒白云母的主量元素和拉曼位移特征指示其为变质成因的多硅白云母。因此,可以利用多硅白云母地质压力计来指示花岗岩形成的压力,并且确定荆山花岗岩发生部分熔融的压力为1.0~1.3 GPa。荆山花岗岩的源岩为华南深俯冲的陆壳碎片,华南板块俯冲到华北克拉通东南缘的深度为33~45 km,相当于华北克拉通中下地壳深度。  相似文献   

20.
东昆仑造山带广泛出露三叠纪岩浆混合成因花岗岩,它们具有共同的特征:岩体成分变化大;花岗岩类岩石中富含镁铁质微粒包体(mafic microgranular enclave--MME);不同岩性之间常常呈渐变过渡关系。同时,这些岩体无一例外都和代表下地壳的深变质岩共生,暗示岩浆就位于地壳深部。此外,东昆仑地区广泛发育基性侵入体,它们产在深变质岩中,或者与岩浆混合成因花岗岩类共生,暗示下地壳物质的部分熔融和岩浆混合成因花岗岩的形成有可能与基性岩浆底侵作用有关。笔者选择东昆仑加鲁河这一典型的岩浆混合成因花岗岩体为例,对其岩石学、地球化学、同位素地球化学等特征进行了详细研究,认为幔源岩浆底侵作用是这类岩体形成的直接原因,并对幔源岩浆底侵作用和岩浆混合成因花岗岩之间的成因联系以及幔源岩浆底侵作用在东昆仑造山带三叠纪地壳生长和构造演化中所起的重要作用进行了讨论,构建了加厚陆壳背景下的断离-底侵-混合-拆沉作用模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号