首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

2.
Surface sediment samples from a matrix of fifty-five sites covering virtually the entire Bohai Sea (Bohai), China were analyzed for total organic carbon (TOC), total nitrogen (TN), n-alkanes, unresolved complex mixture (UCM), biomarkers and stable carbon isotopic composition (δ13C), and principal component analysis was performed for source identification of organic matter (OM). The distribution of organic carbon correlated well with sediment grain size with the finest sediments having the highest concentration, suggesting the influence of hydrodynamics on the accumulation of sedimentary organic matter (SOM). The corrected TOC/ON (organic nitrogen) ratios and δ13C indicated mixed marine and terrestrial sources of SOM. Results suggested that δ13C could be used as a potential indicator to observe the dispersion of Huanghe-derived sediments in Bohai. Total n-alkane concentrations varied over 10-fold from 0.39 to 4.94 μg g− 1 (dry weight) with the maximum terrigenous/aquatic alkane ratio observed at the Huanghe River Estuary (HRE) due to more higher plant OM from riverine inputs. C12–C22 n-alkanes with even-to-odd predominance were observed in several central-eastern Bohai sites. The HRE and its adjacent area is the main sink for the Huanghe river-derived OC. The ubiquitous presence of UCM, biomarkers (hopanes and steranes) and PCA results indicated the presence of petroleum contamination in Bohai, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition.  相似文献   

3.
Origin of sedimentary organic matter in the north-western Adriatic Sea   总被引:1,自引:0,他引:1  
In order to evaluate the origin and the transformation of organic matter on the shallow shelf of the NW Adriatic Sea, organic carbon, total nitrogen and stable isotope ratios of organic carbon were analysed in riverine suspended matter and sediments as well as in marine suspended and sedimentary organic matter, in marine phytoplankton and zooplankton.The deposition of organic matter is influenced by fine sediment concentration. Surface sediments were characterised by highly variable biogeochemical conditions on the sea floor, whereas sub-surface sediments showed a more homogeneous hypoxic/anoxic environment.Low Corg/N ratio and high organic carbon and nitrogen concentrations in riverine suspended organic matter indicate an important contribution of freshwater phytoplankton within rivers, particularly during low flow regimes, which adds to the marine phyto- and zooplankton at shelf locations.In order to evaluate the importance of terrestrial, riverine and marine sources of OM in shelf sediments, a three end-member mixing model was applied to shelf surface sediments using 13C/12C values for organic matter and N/C ratios. The model showed an elevated contribution of terrestrial organic substances at intermediate depths (10–15 m), mostly corresponding to an area of coarser grain-size, whereas the riverine and marine organic fractions were mainly accumulating near the coast and offshore, respectively.  相似文献   

4.
This study investigates the benthic microbial responses to organic matter (OM) variations in quantity and sources in two shallow water bays (Fortaleza and Ubatuba Bays) on the SE coast of Brazil on six occasions during the year. The pelagic and benthic compartments of the bays were evaluated by: (i) nutrients and chlorophyll a (Chl a) in the water column; (ii) quantity and sources of OM in the sediment (Chl a, total organic carbon and total nitrogen and lipid biomarker composition); and (iii) microbial biomass in sediments as an indicator of active benthic response. Although there were changes in water‐column nutrients during the year, Chl a was fairly constant, suggesting a regular supply of microalgae‐derived OM to the sea bottom. Based on the composition of lipid biomarkers in sediments, OM sources were classified as mostly marine and with high contributions of labile (microalgae‐derived) OM. Labile OM composition varied from diatoms in the summer to phytoflagellates in the winter and tended to accumulate in areas protected by physical disturbances in one of the bays. Microbial biomass followed this trend and was 160% higher in protected than in exposed areas. This study suggests that the coupling between labile OM and benthic microbial biomass occurs primarily in protected areas, irrespective of the time of the year. Since meio‐ and macrofaunal assemblages depend upon secondary microbial production within the sediments, this coupling may have an important role for the benthic food‐web.  相似文献   

5.
In this study, organic carbon (OC), total nitrogen (TN), stable carbon isotopic (δ13COC) and CuO reaction product compositions were used to identify the sources of organic matter (OM) and to quantify the relative importance of allochthonous and autochthonous contributions to the western Adriatic Sea, Italy. Suspended particulate material (195 samples) and surficial sediments (0–1 cm, 70 samples) from shallow cross-shelf transects were collected in February and May 2003, respectively. Vertical water column profiles were acquired along the same transects. Data include depth, potential temperature, salinity, density and chlorophyll fluorimetry.Along the western Adriatic shelf in the near-shore region, the phytoplankton growth was influenced by dynamics of the buoyant plumes from the Po and Appennine rivers. A small amount of very fine terrigenous material remained suspended within the coastal current and was exported southward along the shelf to the slope. High variability in the bulk composition was detected in the Po prodelta surficial sediments, whereas the western Adriatic shelf, although a larger area, exhibited a narrower range of values.A significant decoupling was observed between suspended particles in the water column and surficial deposits. The organic material collected in the water column was compositionally heterogeneous, with contributions from marine phytoplankton, riverine–estuarine phytoplankton and soil-derived OM. Frequent physical reworking of surficial sediments likely leads to the efficient oxidation of marine OC, resulting in the observed accumulation and preservation of refractory soil-derived OC delivered by the Po and Appennine rivers.  相似文献   

6.
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0–2 cm) were 5–10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C26-C33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC15 to nC22 compounds. Long-chain (>C20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (<C20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk δ 13CTOCTOC. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.  相似文献   

7.
An understanding of the carbon cycle within arctic sediments requires discrimination between the terrigenous and marine components of organic carbon, insight into the removal mechanisms for labile carbon during burial and appreciation of shelf-to-basin processes. Using a large data set of multiple molecular organic markers (alkanes, alkanols, sterols, saturated and unsaturated fatty acids, dicarboxylic acids), we apply (1) principal components analysis (PCA) to obtain a robust comparison of biomarker compositions in Arctic Ocean sediments, (2) geometric mean (GM) linear regression of the PCA variables to estimate the relative contributions of labile/marine and stable/terrigenous sources to each biomarker and (3) the slope of the GM regression of each biomarker with TOC to provide a novel measure of the removal rate of each biomarker relative to phytol. The PCA- and TOC-based indices generally increase together: biomarkers with very high TOC-based removal rates such as the saturated and unsaturated n-alkanoic acids generally have a high labile/marine content from PCA, while the sterols have low removal rates, but exhibit a range of labile/marine content values and the n-alkanes and n-alkanols have low values for both. A dominant feature of all PCA models examined is a progressive decrease in the autochthonous/marine biomarkers with each increase in sediment core depth, which points to a universal diagenetic alteration of organic carbon with depth in the cores. The PCA model also displays a shelf to basin trend that is non-diagenetic and implies the ongoing (centuries or more) delivery of long-chain n-alkanes, n-alcohols and n-alkanoic acids in a matrix that is pre-formed and well-preserved within the sediments. Terrigenous biomarker distributions within the PCA model suggest that atmospheric transport of plant waxes in aerosols and the water borne transport of very fine plant macerals likely have significant roles in the export of these vascular plant biomarkers to the basins. Biomarker ratios and profiles of the PCA-based labile/marine content with core depth indicate that the PCA model is more strongly influenced by the biomarker lability than the marine content, while increases in the marine content are largely responsible for the shifts in composition for near-surface core sections.  相似文献   

8.
报道了长江口及邻近海域现代沉积物中正构烷烃的浓度及分布特征,通过因子分析法对正构烷烃来源进行了探讨.结果表明,调查站位正构烷烃主要可归纳为3种类型:陆源输入优势型(单峰群)、陆源和海洋内生混合类型(双峰群)和石油类污染类型(单峰型,不具奇偶优势).长江口邻近站位正构烷烃色谱指标的突变,是长江河口区2种不同水团造成沉积物差异的客观反映.除P4外,研究站位总正构烷烃含量(∑n-Alk)与有机碳总量(TOC)相关性良好,且长江口东南-浙江沿岸软泥区正构烷烃的陆源高等植物组分(TER-Alk)、海洋内生组分(PL-1)、奇偶碳优势指数(CPI)等指标与运移距离呈线形关系.在因子分析显示不同来源的4种正购烷烃中,以陆源烷烃输入比重最大(51.5%),在陆源烷烃中又以东海河流物质贡献最大(49.1%);根据因子负荷差异,推测东海北部沉积有机质可能多数来源于苏北沿岸及老黄河口水下三角洲,冲绳海槽区则可能大部分来源于长江及东海内陆架物质,并探讨了其运移机理.  相似文献   

9.
Nemirovskaya  I. A. 《Oceanology》2021,61(2):183-192

The paper summarizes results on the content and composition of aliphatic hydrocarbons (HCs) in suspended particulate matter (SPM) and bottom sediments in the Kara, Laptev, and East Siberian seas obtained in 2015–2018. It was established that the “losses” in HC concentrations in surface waters in the river (Ob, Yenisei, Lena, Khatanga, Indigirka, Kolyma) and seawater mixing zone in some cases exceeded their river removal by 90%. The composition of HCs in surface waters depends on the characteristics of the river catchment area, sampling season. and time of day (high/low tide) and basically coincides with the SPM distribution. In the pelagic zone of the seas, the HC content is close to the background (2–7 μg/L). The influence of anthropogenic input was established only in the Gulf of Ob, where the composition of alkanes is close to oil with a HC content of 86 μg/mg SPM. In bottom sediments, the particle size distribution determines the HCs, and terrigenous n-alkanes play the dominant role in the molecular composition.

  相似文献   

10.
Settling particles and surface sediments collected from the western region of the Sea of Okhotsk were analyzed for total organic carbon (TOC), long-chain n-alkanes and their stable carbon isotope ratio (δ13C) to investigate sources and transport of total and terrestrial organic matter in the western region of the sea. The δ13C measurements of TOC in time-series sediment traps indicate lateral transport of resuspended organic matter from the northwestern continental shelf to the area off Sakhalin via the dense shelf water (DSW) flow at intermediate depth. The n-alkanes in the surface sediments showed strong odd carbon number predominance with relatively lighter δ13C values (from −33‰ to −30‰). They fall within the typical values of C3-angiosperms, which is the main vegetation in east Russia, including the Amur River basin. On the other hand, the molecular distributions and δ13C values of n-alkanes in the settling particles clearly showed two different sources: terrestrial plant and petroleum in the Sea of Okhotsk. We reconstructed seasonal change in the fluxes of terrestrial n-alkanes in settling particles using the mixing model proposed by Lichtfouse and Eglinton [1995. 13C and 14C evidence of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry 23, 969–973]. Results of the terrestrial n-alkane fluxes indicate that there are two transport pathways of terrestrial plant n-alkanes to sediments off Sakhalin, the Sea of Okhotsk. One is lateral transport of resuspended particles with lithogenic material from the northwestern continental shelf by the DSW flow. Another is the vertical transport of terrestrial plant n-alkanes, which is independent of transport of lithogenic material. The latter may include dry/wet deposition of aerosol particles derived from terrestrial higher plants possibly associated with forest fires in Siberia.  相似文献   

11.
Based on simultaneous use of organic and geochemical indicators (δ13C, C/N, and n-alkanes), the genesis of organic matter (OM) in recent bottom sediments of the Kara Sea was characterized. Maps for percentages and absolute masses of marine and terrigenous OM were drawn. The masses of buried marine and terrigenous OM were compared to its supply to the sea and onto the sea bottom.  相似文献   

12.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

13.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

14.
Lipids in surface sediment transects across the Arctic Ocean were identified to define the sources of organic carbon and the transport of material in the ocean basin. Sterols representing diatoms (24-methylcholesta-5,24(28)-dien-3β-ol, 24-methylcholesta-5,22-dien-3β-ol) and dinoflagellates (4α,23,24-trimethylcholest-22-en-3β-ol) together with algal polyunsaturated fatty acids (20:5, 22:6) demonstrated the importance of primary production to organic matter inputs on the Chukchi Shelf. The presence of terrestrial biomarkers including long-chain n-alkanes and mono- and dicarboxylic acids in shelf sediments indicated that while the fraction of terrestrial biomarkers was small compared to marine material, the transport of allochthonous material impacts carbon cycling on the shelf. Algal biomarkers were found in all surficial sediments from the central Arctic basins, demonstrating that some fraction of primary production reached bottom sediments despite ice cover and light limitation. Marine markers represented a small fraction of the total lipids in central basin sediments. This implies that the basins are less productive than shallow waters, significant degradation occurs before the organic matter reaches the sediment–water interface, and substantial amounts of vascular plant material are exported to the central Arctic. Circulation and topographical features, such as the Transpolar Drift and the Lomonosov Ridge, appear to have an important influence on the transport and focusing of terrestrial material in the Arctic Ocean basins.  相似文献   

15.
Continental shelves play a major role as transition zone during transport of multiply-sourced organic matter into the deep sea. In order to obtain a comprehensive understanding of the origin and fractionation processes of organic matter at the NW Iberian margin, 40 surface sediment samples were analyzed for a structurally diverse range of lipid biomarkers, lignin phenols, grain size distribution, organic carbon content (TOC), its stable carbon isotopic composition (δ13CTOC), and the organic carbon to nitrogen ratio (TOC/TN). The biomarker inventory reflected a heterogeneous mixture of organic matter from various marine and terrestrial sources. Soil- and vascular plant-derived continental organic matter, indicated by lignin phenols and plant-derived triterpenoids, was primarily associated with the silt fraction and transported by river run-off. The spatial distribution patterns of higher plant-derived waxes, long-chain n-alkanes, n-alcohols, and n-fatty acids suggested distinct different transport mechanisms and/or sources. The branched tetraether index, a molecular proxy expressing the relative abundance of branched dialkyl tetraethers vs. crenarchaeol and considered to signal soil-derived organic matter, was not as sensitive as the other molecular indicators in detecting continental organic matter. Hydrodynamic sorting processes on the shelf resulted in a separation of different types of terrestrial organic matter; grass and leaf fragments and soil organic matter were preferentially transported offshore and deposited in areas of lower hydrodynamic energy. Algal lipid biomarker distributions indicated a complex community of marine plankton contributing to organic matter. Spatial and seasonal patterns of phytoplankton growth primarily controlled the distribution of algal organic matter components. The interplay of all of these processes controls production, distribution, and deposition of organic matter and results in three distinct provinces at the Galicia–Minho shelf: (I) fresh marine organic matter dominated the inner shelf region; (II) high inputs of terrestrial organic matter and high TOC content characterized the mid-shelf deposited mudbelt; (III) lower concentrations of relatively degraded organic matter with increased proportions of refractory terrestrial components dominated the outer shelf and continental slope.  相似文献   

16.
The purpose of this investigation was to determine if clam digging had an effect on the suspended sediment texture and composition in the intertidal zone. Surface sediment and suspended particulate samples were collected prior to and after bottom perturbation similar to clam digging. The results indicated that the dug bottom sediments became coarser and contained lower amounts of organic matter. The coarser texture was due to increased winnowing on the ‘rough’ bottom created in the digging process.Suspended sediment concentrations also increased after perturbation, especially over finer-textured areas. The resuspended particulates were well sorted with relatively low organic content. Resuspended bottom sediments contributed virtually no protein to the particulates brought in by the estuarine waters. Recovery rate both of the bottom sediments and the suspended particulates was slow, and seemed dependent on the microtopographic relief which could take weeks to months to return to normal.  相似文献   

17.
A study on the bulk distributions and molecular structures of n-alkanes and polycyclic aromatic hydrocarbons (PAH) in organic matter of the sediments from the Bay of Bengal and the Eastern and Central Indian Basins was undertaken. The former two regions represent areas characterised by “normal” sedimentation while the third one mainly represents a region of “active tectonism”. Content of the hydrocarbons in the sediments of “normal” sedimentation ranges between 4.6 and 10.5 μg/g and aromatic hydrocarbons ranges between 0 and 0.38 μg/g. n-Alkanes in the sediments of the northern deep part of the Bay of Bengal consist mostly of long-chain structures (total C25–C33 up to 70%) with a high carbon preference index (CPI=3.01–3.43), indicating a large contribution of organic matter from terrigenous sources. The sediments from the Eastern Indian Basin have n-alkane distributions in which the long-chain components did not exceed 52.5% and the CPI was 1.7–1.90, indicating that the hydrocarbons are mostly derived from marine sources. Sharp increases of hydrocarbons are found in the vicinity of the tectonically active region of the Central Indian Basin, particularly in the sediments collected from the fracture zone. The total concentration of hydrocarbons increase to 170 μg/g and the aromatic hydrocarbons fraction to 156.3 μg/g. The proportion of short-chain n-alkanes increases up to 70%, CPI decreases to 0.76–1.12, and high concentrations of n-C16 (16–40%) occur, all of which are absent in the other samples. The molecular content of PAH includes the unsubstituted individual structures: biphenyl, fluorene, pyrene, perylene, benzo(ghi)perylene, and the groups of homologues of naphthalene, benzofluorene, phenanthrene and chrysene. The association of the PAH and composition of paraffin hydrocarbons in the surficial sediments of deformation zone indicate that these are the resultant products of hydrothermal processes. It is, therefore, suggested that the association and composition of the hydrocarbons in sediments can be utilised as a paleoceanographic parameter to decipher the history of tectonism of an area.  相似文献   

18.
《Marine Geology》1999,153(1-4):303-318
Organic geochemistry and micropaleontology are used to determine the origin of sapropel S1 in the Aegean Sea. Low-molecular-weight (C15, C17 and C19) n-alkane data show that net primary productivity (NPP) increased from ∼14,000 to 10,000 yr BP at the glacial interglacial transition, but the onset of S1 at 9600 yr BP marks a sharp decline in NPP, which remained low until ∼8200 yr BP. The start of sapropel deposition is marked by increased total organic carbon (TOC) and pollen-spore concentrations, together with increased high-molecular-weight (C27, C29, C31 and C33) n-alkanes. Pollen assemblages show large influx of tree pollen from central-northern European forests. Increases in high-molecular-weight n-alkanes suggest greater influx of fresh vascular plant material at the start of S1, although the amount is small compared to other insoluble organic matter. Palynological studies showed that most of this insoluble organic matter are flocks of dark-brown amorphous kerogen, typical of terrigenous humic compounds. From ∼8200 yr BP to the top of S1 at ∼6400 yr BP, there is a decline in high-molecular-weight n-alkanes and terrigenous kerogen, and an increase in low-molecular-weight n-alkanes, suggesting that NPP recovered during the later deposition of S1 in the Aegean Sea. The increase in low-molecular-weight n-alkanes coincides with the recovery of coccolithophores and dinoflagellates, suggesting that these phytoplankton are primarily responsible for the low-molecular-weight n-alkane variations. These data from the Aegean Sea support the model for sapropel deposition resulting from increased influx of TOC during times of stagnant bottom water, but disagree with Mediterranean models prescribing a large increase in marine productivity.  相似文献   

19.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

20.
南黄海悬浮体浓度的平面分布特征及其输运规律   总被引:3,自引:1,他引:2  
重点分析和探讨了南黄海悬浮体浓度的平面分布及其水平输运,结果显示悬浮体浓度具有显著的空间区域化分布特征,其与该海域环流场的布局和季节转换存在良好的对应关系,南黄海环流是该海域悬浮体运移的主要动力和控制因素;江苏近岸海域在一年四季均为悬浮体浓度的最高值区,其悬浮体主要来源于潮流和海浪所引起的沉积物再悬浮以及苏北沿岸水的携带和输送,而且夏季悬浮体在该海域的累积还可为冬半年在黄海西部沿岸流作用下将其输运至东南海域提供很好的物源保证;长江口东北部海域在春、夏、秋三季出现东北向扩展的高值区,体现了长江冲淡水的影响;石岛外海在冬、春、秋三季也存在悬浮体浓度高值区,并具有向南黄海中部泥质区扩展的态势,这是鲁北沿岸流将现代黄河物质输运至此的结果。发现调查海域中部表底层在春秋季均存在云团状高值区,而且该海域悬浮体浓度自春季至秋季出现"双峰现象",这与春秋季水华期间浮游植物繁殖所产生的有机碎屑有关,并使作为悬浮体组成的海洋浮游生物有机质向沉积物转移,据此进一步指出这一物源可能对南黄海冷涡泥质区的形成、发育也具有一定的作用,该观点深化了对南黄海中部冷涡泥质区受上层生物活动影响以及泥质区物源的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号