首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Black Sea dynamics for two decades (1993–2012) is analyzed. The study is carried out in numerical simulation with the use of a circulation model and assimilation of satellite measurements of free surface elevations and sea-surface temperatures (SSTs). The Black Sea circulation model has a spatial resolution of 4.8 km and 35 vertical levels, which thicken toward the surface. Arrays of ERA-Interim data are used for simulating the atmospheric forcing. A set of 3D arrays of the Black Sea hydrophysical fields is calculated on a regular grid with a time resolution of 24 h. The results are analyzed and compared with available contact measurements of temperature and salinity. This comparison shows a quite good quality of the resulted hydrophysical fields of the Black Sea.  相似文献   

2.
Using an interdisciplinary three-dimensional physical and biogeochemical model developed for the Black Sea, the long-term evolution of marine dynamics and ecosystem is investigated. The hydrophysical fields were calculated from a model of Black Sea circulation with assimilation of hydrographic survey and satellite measurement data from 1971 to 2001. The circulation model reproduces well processes of various scales in both space and time (particularly the seasonal course and interannual variability of main hydrophysical fields). The resulting flow fields are then used to calculate the long-term evolution of the components of the lower level of the food chain in the Black Sea ecosystem. The biogeochemical model used in the calculations is based on the nitrogen cycle and includes a parameterization of the main biological and chemical interactions and processes in the upper layer of the Black Sea. The numerical experiments indicated that the biogeochemical component of the model rather successfully reproduces the main features and evolution trends in the Black Sea ecosystem for the period under consideration: the growth in the phytoplankton biomass during eutrophication and changes in seasonal cycles of the main ecosystem components. Also, the hydrophysical processes were shown to be important for a reliable reproduction of long-term changes in the ecosystem.  相似文献   

3.
A numerical technique is presented for simulating the hydrophysical fields of the Black Sea on a variable-step grid with refinement in the area of IO RAS polygon. Model primitive equations are written in spherical coordinates with an arbitrary arrangement of poles. In order to increase the horizontal resolution of the coastal zone in the area of the IO RAS polygon in the northeastern part of the sea near Gelendzhik, one of the poles is placed at a land point (38.35° E, 44.75° N). The model horizontal resolution varies from 150 m in the area of the IO RAS polygon to 4.6 km in the southwestern part of the Black Sea. The numerical technique makes it possible to simulate a large-scale structure of Black Sea circulation as well as the meso- and submesoscale dynamics of the coastal zone. In order to compute the atmospheric forcing, the results of the regional climate model WRF with a resolution of about 10 km in space and 1 h in time are used. In order to demonstrate the technique, Black Sea hydrophysical fields for 2011–2012 and a passive tracer transport representing self-cleaning of Gelendzhik Bay in July 2012 are simulated.  相似文献   

4.
A parallel version of the NEMO complex ocean circulation model has been implemented for the Black Sea basin; the results of circulation numerical modeling with a high spatial resolution are presented. Analysis of the spatial variability is performed for the reconstructed hydrophysical fields in 2005–2008. The resulting simulated spatial variability characteristics of the sea surface temperature are compared with available satellite observational data.  相似文献   

5.
We realize the algorithm of adaptive statistics of forecasting errors for the assimilation of the climatic fields of temperature and salinity in the σ-coordinate model of the dynamics of the Black Sea. The principal relations of this algorithm and its simplified version based on the Kalman filter are presented. The distinctive features of realization of the algorithm specified by the model are discussed. We also present the results of comparison of the hydrophysical fields of the Black Sea reconstructed according to the algorithm of adaptive statistics and a simplified scheme of assimilation of the climatic data. It is shown that the dependence of sources in the transport equations (heat and salt diffusion) on the four-dimensional variances of forecasting errors and threedimensional measurement errors enables one to reconstruct the mutually adapted climatic parameters of the sea more exactly.  相似文献   

6.
A near-bottom pressure equation consistent with the original set of difference equations is derived in the framework of a numerical energetically-balanced model. The model is used to simulate numerically three-dimensional density and current velocity fields and in the Black Sea for a specific season. The climatic values of temperature, salinity, and tangential wind stress during summer are applied as the original conditions. Analysis of the hydrophysical fields at the final moment of integrating is performed. The difference between new data and data derived earlier is demonstrated.Translated by V. Puchkin.  相似文献   

7.
A numerical experiment with assimilation of hydrological observational data from a survey in October 2007 on the northwestern shelf of the Black Sea was carried out using the hydrodynamic model with nonlinear equations of motion, equations of heat and salt advection, and data assimilation. The results of this calculation are compared with thermohydrodynamic fields obtained without taking into account temperature and salinity measurements. It is shown that allowance for the observation data leads to qualitative and quantitative differences in the structure of the hydrophysical fields. Mesoscale eddies and intense jet streams that agree with satellite observations were found in the field of currents and were investigated. These eddies are not resolved in low-resolution field experiments.  相似文献   

8.
We analyze the seasonal variability of the climatic hydrophysical fields of the Black Sea reporduced in three numerical experiments carried out according to the model of circulation. The numerical predictions are performed for a period of 12.5 yr on the basis of the hydrological data accumulated in 1983–1995. The monthly average climatic fields of the current speed are reconstructed according to the data on the climatic fields of temperature and salinity by the method of hydrodynamic adaptation (standard). It is shown that, in prognostic calculations, the seasonal variability of temperature and salinity is qualitatively close to the “standard” dependence. At the same time, the quantitative difference between the climatic behavior of the model and the standard dependence may be significant. The annual cycle of the currents is characterized by the intensification of the Main Black-Sea Current in winter. The structure of the hydrophysical fields of the sea in the model becomes much more realistic if it is based on the actual hydrological data. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

9.
10.
This paper considers the main steps in improving the methods for calculating the ocean (sea) dynamics on the basis of observational data on sea-water temperature and salinity. The results of diagnostic and adaptation calculations for the near-equatorial area of the West Atlantic in the area of the Lomonosov countercurrent formation are presented. We consider the problem of the complex use of measurements of temperature, salinity, and current velocity in the POLYMODE polygons with their assimilation into the model using a Kalman filter. The results of calculations of the coordinated fields with the mechanism of geostrophic adaptation and using asynchronous measurements obtained by the Razrezy program are given. We discuss further modifications of the assimilation algorithms for hydrological observation data in models of sea dynamics and the principles of adaptation of hydrophysical fields that made it possible to reconstruct the climate fields of the Black Sea and to reproduce the basin dynamics for 23 years.  相似文献   

11.
As part of the Russian-Ukrainian program “The Black Sea as a Simulation Model of the Ocean,” the monitoring of the marine environment is considered using modern measuring systems. On the basis of historical and contemporary observation data, we estimate the spatial and temporal scales of dominant processes in the Black Sea. We describe the main measuring systems used to monitor the structure and variability of the hydrophysical fields. Examples characterizing the specific features of the Black Sea processes are presented.  相似文献   

12.
A procedure for the four-dimensional (4D) analysis of the hydrophysical fields in the Black Sea with an assimilation of the temperature and salinity (T, S) data was realized on the basis of a numerical model which involves the primitive equations of motion, and the heat and salt advection equations. Two experiments were carried out which differed by the observation data assimilation procedure. Analysis has shown that the observation data assimilation procedure realized using the energy-balanced model allows the reproduction of some synoptic features of the circulation in the Black Sea. A comparison of two computations demonstrates the efficiency of assimilating the measurement data on the basis of the 4D analysis as compared with the sequential objective analysis.Translated by Mikhail M. Trufanov.  相似文献   

13.
The results of simulating the hydrophysical fields of the Black Sea with a resolution of 1.64 × 1.64 km for January–September 2006 with the use of real atmospheric forcing are analyzed. Both vertical turbulent momentum exchange and vertical turbulent heat and salt diffusions are parameterized using the Mellor-Yamada level 2.5 scheme. The results of this numerical experiment are compared with similar data obtained with a horizontal resolution of 5 km. The features of the meso- and submesoscale dynamics of waters in individual sea regions are given. Possible physical mechanisms of forming meso- and submesoscale vortices are studied on the basis of energy analysis. It is shown that, in the absence of significant wind forcing, the main contribution to kinetic energy is made by the buoyancy force and wind-field inhomogeneities result in significant variations in both total vertical viscosity and total vertical diffusion.  相似文献   

14.
The results of research into the seasonal variability of hydrothermodynamic characteristics of the Black Sea are presented. These have been obtained using field data on the fields of temperature, salinity, and wind, and by mathematical modelling. The seasonal variability of the current and heat content fields and of the cold intermediate layer and other hydrophysical characteristics is discussed.Translated by Mikhail M. Trufanov.  相似文献   

15.
On the basis of an analysis of the results of modeling and a forecast of the basic hydrophysical fields in the easternmost part of the Black Sea for 2010–2012, the features of annual variability of regional circulating processes in this part of the sea basin are investigated. A forecast of a hydrological mode is made on the basis of the regional forecasting system developed at the Institute of Geophysics at Javakhishvili State University in cooperation with the oceanographic centers of the Black Sea riparian countries within the frame-work of the ARENA and ECOOP EU international scientific and technical projects. The regional system is one of the components of the Black Sea basin-scale Nowcasting/Forecasting System. The analysis of the material cumulated for the registered period shows that the easternmost water area of the Black Sea is a dynamically active zone where there is a continuous formation of different circulating processes considerably distinguished from each other.  相似文献   

16.
The Black Sea shelf is a region of intense manifestation of various dynamical processes. Under the influence of different natural forces, eddy-wave phenomena develop here, which influence the general circulation of sea waters, biological productivity, and the condition of the engineering structures. Modern numerical models allow us to simulate and analyze the processes of the joint dynamics of marine circulation and large-scale waves. In this work, we study the spatiotemporal spectral characteristics of the sea level and velocity fluctuations formed due to atmospheric forcing and tidal potential. The hydrophysical fields are calculated using the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), σ model based on primitive equations. We use the CORE data as atmospheric forcing at the sea surface; the tidal potential is described by the semidiurnal lunar constituent M2. Analyzing the simulation results makes it possible to emphasize that accounting for the semidiurnal tidal potential not only improves the accuracy of the sea-level calculation at coastal stations, but also generates subinertial baroclinic oscillations previously found in the Black Sea from the data of in situ observations.  相似文献   

17.
Two numerical experiments on reconstructing velocity fields, sea level, temperature, and salinity were conducted with account for real atmospheric forcing in autumn 2007 using the Marine Hydrophysical Institute (MHI) hydrodynamic model with an open boundary (northwestern shelf) adjusted to the coastal region of the Black Sea. A high spatial resolution of 500 m and 1.6 km was used, while the bottom topography had a resolution of ~1.6 km. The higher spatial resolution made it possible to reconstruct detailed mesoscale and submesoscale structures of the hydrophysical fields in the upper and deep layers over the northwestern shelf and to obtain quantitative and qualitative characteristics of eddies and jets that are more accurate compared to previous calculations. It was shown that improvement of the spatial resolution up to a few hundred meters makes it possible to take into account the detailed bottom topography and shape of the coastline in the numerical model, which in turn yields a more accurate quantitative and qualitative reconstruction of the mesoscale and submesoscale properties of coastal circulation.  相似文献   

18.
The numerical algorithm of the Kalman optimum filtration generalized for the case of three-dimensional fields and a multicomponent vector of the ocean state, with level measurements discrete over space and time being available, is given. The results of model numerical experiments on the assimilation of data on the Black Sea level are given. An attempt to estimate the effect of the time interval of data input on the results of field reconstruction was made.Translated by Mikhail M. Trufanov.  相似文献   

19.
We propose an algorithm of adaptive statistics of prognostic errors aimed at the assimilation of the climatic temperature and salinity fields in a model of dynamics of the sea. The algorithm is used for the numerical solution of the proposed differential equations for the dispersions of prognostic errors of temperature and salinity. The sources in the equations of advective diffusion of heat and salt depend on the four-dimensional dispersions of prognostic errors and one-dimensional (along the vertical coordinate) dispersions of measurement errors. The dispersions of prognostic errors are corrected at the times of assimilation of the data. We perform the reconstruction and analysis of the climatic fields of currents in the Black Sea. It is shown that the structure of the fields of dispersions in the upper mixed layer is determined by the vertical diffusion. Below this layer, the distribution of dispersions depends on the vertical advection. The algorithm of adaptive statistics of prognostic errors allows us to reconstruct the improved mutually adapted hydrophysical parameters with regard for the dynamics of the dispersions of errors. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 26–37, January–February, 2008.  相似文献   

20.
We propose a gap-filling method for the data of remote sensing of the hydrophysical and biological characteristics of the water surface. The proposed method of reconstruction is based on the representation of the fields of surface characteristics as the sums of certain numbers of empirical orthogonal functions (EOF) making the largest contributions to the total variance of the field. According to the fragmentary data obtained as a result of processing of the satellite images for the summer season, we construct estimates of the mean field and of the four-dimensional space covariance function of the surface temperature of the Black Sea. The coefficients of expansion are computed by the method of least squares or determined with the help of a genetic searching algorithm. The results of numerical experiments show that the proposed method is quite promising for applications in the problems of gap filling in the available satellite data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号