首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study developed a high-quality climatological dataset for the Indian Ocean - the Indian Ocean HydroBase (IOHB) - from a combined dataset including the World Ocean Database 1998 version 2 (WOD98v2). Methods are similar to those used by previous studies for other oceans. Japanese data for the IOHB originated from the Japanese datasets MIRC (Marine Information Research Center) Ocean Dataset 2001 and Far Seas Collection; these datasets contain more Japanese observations than WOD98v2. Water mass properties in the IOHB climatology are consistent with previous studies. Seasonal patterns of properties near the sea surface are well reproduced, and deep-layer properties are consistent with the Reid-Mantyla climatology that is derived from high-quality observations. The isopycnal climatology of the IOHB differs from the World Ocean Atlas 2001 (WOA01) along the fronts associated with the Antarctic Circumpolar Current (ACC). The WOA01 shows a warm and saline intermediate water intrusion from South Africa to the east along the northern edge of the front. Such an intrusion is absent in IOHB where less saline intermediate water extends continuously northward from the southern ocean. The WOA01 shows a continuous belt of low potential vorticity along the ACC. This feature is less distinct in the IOHB climatology and in the Reid-Mantyla climatology. The IOHB consists of a 1° × 1° gridded climatology and the datasets of raw and quality-controlled hydrographic stations. The latter is valuable for quality control of the Argo float salinity data as climatological reference. These datasets are available freely via the Internet.  相似文献   

2.
It is shown on the basis of the data of the Russian Academy of Sciences expeditions in 2003–2010, the historical CTD database, the WOCE climatology, and the satellite altimetry that the area of the Scotia Sea and the Drake Passage is even a greater significant orographic barrier for the eastward Antarctic Circumpolar Current (ACC) than was previously thought. It is the current concept that this barrier is the most important for the ACC; it consists of three obstacles: the Hero Ridge with the Phoenix Rift, the Shackleton Ridge, and the North Scotia Ridge with the relatively shallow eastern part of the Scotia Sea. Despite the fact that all three obstacles are permeable for the layer of the Circumpolar Bottom Water (CBW; 28.16 < γ n < 28.26) being considered the lower part of the circumpolar water, the circulation in this layer throughout the Scotia Sea and the Drake Passage quite substantially differs from the transfer by the surface-intensified ACC jets. Herewith, the upper CBW boundary is the lower limit of the circumpolar coverage of the ACC jets. This result is confirmed by the near zero estimate of the total CBW transport according to the three series of the LADCP measurements on the sections across the Drake Passage. It is shown that the transformation (cooling and freshening) of the CBW layer, which occurs owing to the flow of the ACC over the Shackleton Ridge, is associated with the shape and location of the ridge in the Drake Passage. The high southern part of this ridge is a partially permeable screen for the eastward CBW transport behind which the colder and fresher waters of the Weddell Sea and the Bransfield Strait of the same density range as the CBW penetrate into the ACC zone. The partial permeability of the Shackleton Ridge for the CBW layer leads to the salinization of this layer on the eastern side of the ridge and to the CBW’s freshening on the western side of this ridge, which is observed across the entire Drake Passage.  相似文献   

3.
南大洋海洋环流系统由南极底层水AABW、南极绕极流ACC、南极表层水AASW、绕极深层水CDW组成,它们在全球气候调节中扮演重要角色。随着科考技术的进步,有关南大洋古环流研究越来越多,研究主要集中在温度、盐度、流向和影响作用等方面。研究侧重内容不同所采取的手段和方法也有差别,南大洋古环流研究方法包括古生物法、地球化学法、数值模拟、沉积法、实测资料等。本文就这些研究方法做一简单综述,以期强调南大洋在全球大洋历史中的作用。  相似文献   

4.
Quasi-continuous fugacity of CO2 (fCO2) data were collected in the eastern Weddell Gyre and southern Antarctic Circumpolar Current (ACC) of the Southern Ocean during austral autumn 1996. Full depth Total CO2 (TCO2) sections are presented for austral autumn and winter (1992) cruises. Pronounced fCO2 gradients were observed at the Southern Ocean fronts. In the Weddell Gyre, fCO2 regimes appeared to coincide with surface and subsurface hydrographic regimes. The southern ACC was supersaturated with respect to CO2, as was part of the northern Weddell Gyre. The southern Weddell Gyre was markedly undersaturated. The great potential of autumn cooling for generating undersaturation and CO2 uptake from the atmosphere was demonstrated. In the northeastern Weddell Gyre, upwelling of CO2- and salt-rich deep water was shown to play a role as the horizontal fCO2 distribution closely resembled that of the surface salinity. The total uptake of atmospheric CO2 by the Weddell Gyre in autumn (45 days) was calculated to be 7·1012 g C. The deep TCO2 distribution noticeably reflected the different water masses in the region. A new deep TCO2 maximum was detected in the ACC, which apparently characterizes the boundary between the equatorward flowing Antarctic Bottom Water (AABW) and the Circumpolar Deep Water (CDW). East of the Weddell Gyre, the AABW stratum is much thicker (>2000 m) than more to the west, on the prime meridian (<300 m).  相似文献   

5.
南极印度洋扇区分布了许多南极底层水的生成区,此海域海水盐度变化对全球的气候变化有着深远影响。本文采用EN4再分析数据、实测海豹资料和WOD18数据,结合大气再分析和海冰密集度数据,对南极印度洋扇区表面盐度长期变化及其对大尺度环流异常的响应进行探究。2008年以来,南极沿岸出现显著的海表面持续性高盐异常,其中印度洋扇区变化最为显著,表层高盐水主要集中在达恩利冰间湖附近与沙克尔顿冰架以北的海域。沿岸海域的高盐陆架水向北扩张且影响深度不断加深,高盐的绕极深层水上涌也更加明显。此高盐异常与南极涛动(Antarctic Oscillation,AAO)、印度洋偶极子(Indian Ocean Dipole,IOD)两种大尺度环流密切相关。AAO与IOD正位相下,西风显著增强,促进海冰大量生成,为海表面提供了大量的盐通量。同时,海表面出现更显著的风场旋度负异常与低压异常,促进高盐深层水上涌,对高盐异常有重要维持作用。此外,纬向风剪切与蒸发增强也是影响该高盐异常的重要局地过程。  相似文献   

6.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   

7.
Hydrographic data from the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) in the region of transition between the Scotia Sea and the Argentine Basin are examined to determine the composition of the deep water from the Southern Ocean that enters the Atlantic, and to describe the pathways of its constituents. The deep current that flows westward against the Falkland Escarpment is formed of several superposed velocity cores that convey waters of different origins: Lower Circumpolar Deep Water (LCDW), Southeast Pacific Deep Water (SPDW), and Weddell Sea Deep Water (WSDW).Different routes followed by the WSDW upstream of, and through, the Georgia Basin, lead to distinctions between the Lower-WSDW (σ4>46.09) and the Upper-WSDW (46.04<σ4 <46.09). The Lower-WSDW flows along the South Sandwich Trench, then cyclonically in the main trough of the Georgia Basin. Although a fraction escapes northward to the Argentine Basin, a comparison of the WOCE data with those from previous programmes shows that this component had disappeared from the southwestern Argentine Basin in 1993/1994. This corroborates previous results using SAVE and pre-SAVE data. A part of the Upper-WSDW, recognizable from different θ–S characteristics, flows through the Scotia Sea, then in the Georgia Basin along the southern front of the Antarctic Circumpolar Current. Northward leakage at this front is expected to feed the Argentine Basin through the northern Georgia Basin. The SPDW is originally found to the south of the Polar Front (PF) in Drake Passage. The northward veering of this front allows this water to cross the North Scotia Ridge at Shag Rocks Passage. It proceeds northward to the Argentine Basin around the Maurice Ewing Bank. The LCDW at the Falkland Escarpment is itself subdivided in two cores, of which only the denser one eventually underrides the North Atlantic Deep Water (NADW) in the Atlantic Ocean. This fraction is from the poleward side of the PF in Drake Passage. It also crosses the North Scotia Ridge at Shag Rocks Passage, then flows over the Falkland Plateau into the Atlantic. The lighter variety, from the northern side of the PF, is thought to cross the North Scotia Ridge at a passage around 55°W. It enters the Argentine Basin in the density range of the NADW.  相似文献   

8.
The frontal structure in the region south of Africa is investigated on the basis of CTD and SADCP measurements along the SR02 hydrophysical section carried by the R/V Akademik Ioffe in December of 2009 from the Cape of Good Hope to 57° S at the Prime Meridian. Eleven jets of the Antarctic Circumpolar Current (ACC) were revealed along the section. These were six jets of the Subantarctic Current (SAC), three jets of the South Polar Current (SPC), and two jets of the Southern Antarctic Current (SthAC). The jet combining the Weddell Front and the Southern Boundary of the ACC was also revealed. All the jets of the SPC based on the data of direct measurements were joined into a single “superjet.” The others were manifested by the local velocity maxima in the surface layer of the ocean. The subtropical water along the section from the Southern Subtropical Front to the Shelf-Slope Front near the African shore was almost completely represented by the Indian Ocean (Agulhas Retroflection) water modified by mixing with the fresher water of the southeastern periphery of the Subtropical Atlantic.  相似文献   

9.
中国南大洋水团、环流和海冰研究进展(1995-2002)   总被引:2,自引:0,他引:2  
总结了1995年以来中国在南大洋物理海洋学研究和南极海冰研究中所取得的成果。普里兹湾海区是中国南大洋研究的重点区域,研究表明,在该海区存在显著的深层水涌升和陆架水北扩现象,某些年份深层水与陆架水混合后产生了较重的水体,但是尚未发现生成南极底层水的直接证据。在普里兹湾所处的印度洋区段,亚热带锋、亚南极锋和极锋表现出显著的时空变化,特别是不同年份的锋面位置存在较大的摆动。该海区的南极绕极流既是风生的,也受到密度场的影响。在凯尔盖朗海台的地形引导作用下,南极绕极流表现出显著的非纬向性特征。南极海冰除了显著的季节变化以外,也表现出长期变化的趋势。此变化与海洋、大气中的其它变化有一定的相关性,表现为两极海冰涛动、南方海洋涛动等多种变化模态,对我国气候也有一定的影响。  相似文献   

10.
南大洋凯尔盖朗海台区的流场结构及季节变化   总被引:4,自引:0,他引:4  
利用冰-海耦合等密面模式模拟了南大洋凯尔盖朗海台区的环流及其季节变化.对模拟结果的分析表明,该海区的南极绕极流具有非常显着的条带状分布和非纬向性特征.南极绕极流流经凯尔盖朗海台时,在海台的南部、中部和北部表现出不同的形式,其南部的一个分支贴近南极大陆,与西向的陆坡流之间有强的相互作用.海台以北的南极绕极流的变化以年周期为主,海台以南的变化以半年周期为主,其时间变化规律与这里的风应力的变化规律是一致的.  相似文献   

11.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

12.
The objective of the paper is to use the data collected along two meridional sections (45° E and 57°30′ E) during the austral summer (January–March) 2004 to understand the influence of seabed topography across the Madagascar and Southwest Indian Ridges on hydrographic parameters. The study was supplemented by World Ocean Circulation Experiment (WOCE) Conductivity-Temperature-Depth data collected during February–March 1996 along 30° E, as well as Levitus climatology. A southward shift of 2° latitude (between 45° E and 57°30′ E) was recorded for the two predominant frontal structures, i.e., the Agulhas Return Front and Southern Subtropical Front, which is attributed to the influence of seabed topography on hydrographic parameters. No significant spatial variation of these fronts was noted between the 30° E and 45° E meridional sections. Between latitudes 31° S and 42° S, the temperature and salinity structures show deepening over the ridges. The Antarctic Circumpolar Current core was detected between 40°15′ S and 43° S.  相似文献   

13.
Fronts,baroclinic transport,and mesoscale variability of the Antarctic Circumpolar Current(ACC) along 115°E are examined on the basis of CTD data from two hydrographic cruises occupied in 1995 as a part of the World Ocean Circulation Experiment(WOCE cruise I9S) and in 2004 as a part of CLIVAR/CO2 repeat hydrography program.The integrated baroclinic transport across I9S section is(97.2×106±2.2×106) m3/s relative to the deepest common level(DCL).The net transport at the north end of I9S,determined by the south Australian circulation system,is about 16.5×106m3/s westward.Relying on a consistent set of water mass criteria and transport maxima,the ACC baroclinic transport,(117×106 ±6.7×10 6)m3/s to the east,is carried along three fronts:the Subantarctic Front(SAF) at a mean latitude of 44°-49°S carries(50.6×10 6 ±13.4×106)m3/s;the Polar Front(PF),with the northern branch(PF-N) at 50.5°S and the southern branch(PFS) at 58°S,carries(51.3×106 ±8.7×106)m3/s;finally,the southern ACC front(SACCF) and the southern boundary of the ACC(SB) consist of three cores between 59°S and 65°S that combined carry(15.2×106 ±1.8×106)m3/s.Mesoscale eddy features are identifiable in the CTD sections and tracked in concurrent maps of altimetric sea level anomalies(SLA) between 44°-48°S and 53°-57°S.Because of the remarkable mesoscale eddy features within the SAF observed in both the tracks of the cruises,the eastward transport of the SAF occurs at two latitude bands separating by 1°.Both the CTD and the altimetric data suggest that the mesoscale variability is concentrated around the Antarctic Polar Frontal Zone(APFZ) and causes the ACC fronts to merge,diverge,and to fluctuate in intensity and position along their paths.  相似文献   

14.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

15.
An experiment using a global ocean–ice model with an interannual forcing data set was conducted to understand the variability in the Southern Ocean. A winter-persisting polynya in the Weddell Sea (the Weddell Polynya, WP) was simulated. The process of WP breaking out after no-WP years was explored using the successive WPs found in the late 1950s. The results suggested that the anomalously warm deep water, saline surface layer, and a cyclonic wind stress over the Maud polynya region in early winter are essential for the surface layer to be dense enough to trigger deep convections which maintain a winter-persisting polynya; also, the reanalyzed surface air temperature (SAT) over the observed polynya region is too high for an ocean–ice model’s bulk formula to yield sufficient upward heat fluxes to induce WP formation. Therefore the Weddell Polynya, a series of WPs observed from satellite in the mid-1970s, is reproduced by replacing the SAT with a climatological one. Subsequent to the successive WP events, density anomalies excited in the Weddell Sea propagate northward in the Atlantic deep basins. The Antarctic Circumpolar Current (ACC) is enhanced through the increased meridional density gradient. The enhanced ACC and its meandering over the abyssal ridges excite buoyancy anomalies near the bottom at the southwestern end of the South Pacific basin. The buoyancy signals propagate northward and eventually arrive in the northern North Pacific.  相似文献   

16.
We present and assess the distribution of neon in South Atlantic and South Pacific waters, on the basis of more than 3000 mostly new neon data which were obtained primarily under the hydrographic program of the World Ocean Circulation Experiment (predominantly southern summer to fall cruises). Data precision is better than±0.5%, and the set is internally consistent within±0.3% and partly better, and compatible with reported high-quality neon values. Using suitably averaged data (precision 0.1–0.3%), we find that the total range of neon anomalies relative to a solubility equilibrium with atmospheric neon at the observed potential temperature and salinity (using the solubilities of Weiss, J. Chem. Eng. Data 16 (1971) 235) is approximately 0–4%, and below 2000 m depth, 3–4% only. We consistently observe two types of neon depth profiles, one for the temperate-latitudes ocean, which is characterized by a near-surface maximum and a minimum in Antarctic Intermediate Water, and one for the Southern Ocean that essentially displays a steady increase with depth. The neon distribution reflects the influence of air injected by submerged air bubbles, the areal distribution of atmospheric pressure, seasonal temperature changes in the mixed layer and solar heating below it, and interaction with sea ice and glacial ice, largely in keeping with previous work. However, it appears that interaction with sea ice reduces neon anomalies distinctly less than the literature suggests. The temperate-ocean shallow maxima point to widespread subsurface heating in the course of the summer season by roughly 1 K. Among the major source water masses of the deep waters, the neon anomalies are lowest in Antarctic Intermediate Water (∼1.5%), intermediate in North Atlantic Deep Water (∼3%, confirming previous work) and similarly in Circumpolar Deep Water, and highest in Antarctic Bottom Water (∼3.8%). The anomalies in Southeast Pacific deep waters (>2500 m) are comparatively less (only∼3.3%), as a result of the contribution of Antarctic Intermediate Water. The present study is the first attempt to deal with the oceanic distribution of neon in a systematic fashion. The results can serve to assist assessments of the oceanic distributions of other dissolved gases.  相似文献   

17.
Methods from chaos theory are applied to the analysis of the circulation in the Southern Ocean, using velocity fields produced by a realistic global ocean model. We plot the intersections of individual trajectories encircling Antarctica with a vertical plane in the Drake passage. This so-called Poincaré section shows a drastic difference between regular trajectories in a core region of the Antarctic Circumpolar Current (ACC), and chaotic, mixing trajectories in the surrounding region. It also shows that there is a region with overturning circulation of approximately 3.5 Sv in the ACC, with downwelling on the northern side and upwelling on the southern side, which may be related to the Deacon cell.  相似文献   

18.
Altimeter and in situ data are used to estimate the mean surface zonal geostrophic current in the section along 115°E in the southern Indian Ocean,and the variation of strong currents in relation to the major fronts is studied.The results show that,in average,the flow in the core of Antarctic Circumpolar Current(ACC) along the section is composed of two parts,one corresponds to the jet of Subantarctic Front(SAF) and the other is the flow in the Polar Front Zone(PFZ),with a westward flow between them.The mean surface zonal geostrophic current corresponding to the SAF is up to 49 cm · s-1 at 46°S,which is the maximal velocity in the section.The eastward flow in the PFZ has a width of about 4.3 degrees in latitudes.The mean surface zonal geostrophic current corresponding to the Southern Antarctic Circumpolar Current Front(SACCF) is located at 59.7 °S with velocity less than 20 cm · s-1.The location of zonal geostrophic jet corresponding to the SAF is quite stable during the study period.In contrast,the eastward jets in the PFZ exhibit various patterns,i.e.,the primary Polar Front(PF1) shows its strong meridional shift and the secondary Polar Front(PF2) does not always coincide with jet.The surface zonal geostrophic current corresponding to SAF has the significant periods of annual,semi-annual and four-month.The geostrophic current of the PFZ also shows significant periods of semi-annual and four-month,but is out of phase with the periods of the SAF,which results in no notable semi-annual and fourmonth periods in the surface zonal geostrophic current in the core of the ACC.In terms of annual cycle,the mean surface zonal geostrophic current in the core of the ACC shows its maximal velocity in June.  相似文献   

19.
The spatial and temporal distribution of cadmium (Cd) and phosphate in the Southern Ocean are related to biology and hydrography. During a period of 18 days between transects 5/6 and 11, a phytoplankton spring bloom developed in the Polar Frontal region. Upper water Cd concentrations were not depleted and ranged from 0.2 to 0.8 nM at about 10 m depth. These relatively high Cd concentrations are attributed to upwelling of Upper Circumpolar Deep Water (0.5–1.2 nM in the core) in combination with low biological productivity (0.2 to 0.3 mg m−3 chlorophyll-a, 0.3 g C m−2 d−1). Total particulate Cd concentrations at 40 m depth were between 0.02 and 0.14 nM with the maximum in concentration in the Polar Frontal region. Most of the particulate Cd at this depth (85–94%) was detected in the first phase of a sequential chemical leaching treatment which includes adsorbed Cd as well as Cd incorporated in algae. The Polar Frontal region was characterized by minima in Cd concentration and Cd/phosphate ratio of seawater at both transects; values were the lowest at transect 11 after development of the spring bloom which was dominated by diatoms. This decreasing Cd/phosphate ratio in seawater during spring bloom development was attributed to preferential Cd gross uptake which more than compensated the process of preferential Cd recycling. Within the Upper Circumpolar Deep Water, Cd showed a maximum in concentration similar to that of the major nutrients. Both the Cd concentration and the Cd/phosphate ratio of the deeper water increased in southern direction, from 0.4 to 0.7 nM and from 0.2 to 0.3 nM/μM, respectively. Antarctic Intermediate Water has a Cd concentration of 0.21 nM with a Cd/phosphate ratio of 0.10 nM/μM. In Antarctic Bottom Water, Cd concentrations ranged from 0.60 to 0.82 nM.  相似文献   

20.
分析普里兹湾及其附近海域温、盐分布特征,提出在艾默里冰架外侧有一片温暖水域。指出:1、变性极大的南极绕极深层水的前沿混合水可以影响到陆架上的南纬67°左右;2、在两个“CTD”探头直达海底的测站,深层观测到了温度为负值、盐度为34.67。据此,作者指出该水体属于南极底层水。此外,还对整个海区的跃层现象进行分类,计算了跃层的强度、厚度和深度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号