首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
This paper presents the results of spectroscopic and photometric observations of the early-type W UMa system V535 Ara. New high-resolution spectra were taken at the Mt. John University Observatory in 2007. Radial velocities and spectroscopic orbital elements of the system were determined by applying KOREL spectral disentangling. The resulting orbital elements were: a1sini = 0.0047 ± 0.0001 AU, a2sini = 0.0146 ± 0.0001 AU, M1sin3i = 1.85 ± 0.01 M, and M2sin3i = 0.59 ± 0.01 M. The components were found to be in synchronous rotation following examination of their disentangled Hγ line profiles. Four photometric data-sets (1966 BV, 1967 BV, HIPPARCOS and ASAS) were modeled using the Wilson-Devinney method. The model describes V535 Ara as an A sub-type W UMa type eclipsing binary which has a fill out factor of 0.22 in marginal contact configuration. The simultaneous solution of light and radial velocity curves gave the following absolute parameters: M1 = 1.94 ± 0.04 M, M2 = 0.59 ± 0.02 M, R1 = 2.09 ± 0.03 R, R2 = 1.23 ± 0.02R, L1 = 18 ± 3 L and L2 = 6 ± 1 L. The distance to V535 Ara was calculated as 123 ± 20 pc using distance modulus with correction for interstellar extinction.  相似文献   

3.
D. Sürgit  A. Erdem 《New Astronomy》2012,17(3):336-340
This paper presents the first analysis of spectroscopic and photometric observations of the eclipsing binary star WZ Hor. Observations of the system were made at the Mt. John University Observatory in 2007. Since the light contribution of the secondary component was merely 2-3% of the total light of the system in the optical wavelengths, the radial velocity of the primary component could only be determined using the cross-correlation method. A single-lined spectroscopic orbital solution of WZ Hor was obtained, and the BVRI light curves of the system and radial velocity curve of the primary component were analysed simultaneously using the Wilson-Devinney method. The results describe WZ Hor as a reverse Algol-like binary star with a detached configuration. The following absolute parameters of the components were also derived: M1 = 1.51 ± 0.03 M, M2 = 0.66 ± 0.01 M, R1 = 1.62 ± 0.02 R, R2 = 0.66 ± 0.01 R, L1 = 4.93 ± 0.64 L and L2 = 0.09 ± 0.02 L. The distance to WZ Hor was calculated as 95 ± 8 pc using distance modulus with correction for interstellar extinction, in agreement with the HIPPARCOS value.  相似文献   

4.
In this study, we present long term photometric variations of the close binary system GO Cyg. Modelling of the system shows that the primary is filling Roche lobe and the secondary of the system is almost filling its Roche lobe. The physical parameters of the system are M1 = 3.0 ± 0.2M, M2 = 1.3 ± 0.1M, R1 = 2.50 ± 0.12R, R2 = 1.75 ± 0.09R, L1 = 64 ± 9L, L2 = 4.9 ± 0.7L, and a = 5.5 ± 0.3R. Our results show that GO Cyg is the most massive system near contact binary (NCB). Analysis of times of the minima shows a sinusoidal variation with a period of 92.3 ± 0.5 yr due to a third body whose mass is less than 2.3M. Finally a period variation rate of −1.4 × 10−9 d/yr has been determined using all available light curves.  相似文献   

5.
A method for the determination of [α/Fe] from low-resolution stellar spectra is presented. The proposed scheme includes the following three steps: firstly, the spectrum is decomposed by the multi-scale Haar wavelet, and the high-frequency components are removed to suppress the high-frequency noise; then, based on the correlation of the spectral data component with [α/Fe], the spectral features are selected by the LASSO (Least Absolute Shrinkage and Selection Operator) algorithm; finally, [α/Fe] is measured by the multiple linear regression method based on the MARCS stellar spectrum library. The effectiveness of the method is verified with the low-resolution stellar spectra of ELODIE, SDSS (Sloan Digital Sky Survey), LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope), and four star clusters. The systematic deviations and accuracies are as follows: (0.04 dex, 0.064 dex) for the 317 ELODIE spectra; (0.16 dex, 0.065 dex) for the 412 SDSS spectra; (0.05 dex, 0.062 dex) for the 1276 LAMOST spectra (with the signal-noise ratio in the g band (SNRG) greater than 20). The averages of [α/Fe] obtained for the likely members of the globular star clusters (M13, M15) and open star clusters (NGC2420, M67) are in agreement with the literature values.  相似文献   

6.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

7.
8.
The linear stability analysis of the radial and non-radial oscillations for the evolutionary model of a star with the mass of 0.6∼3 M8 has been per- formed by using the nonlocal and time-dependent convection theory. The results show that the unstable low-temperature stars on the right side of the instabil- ity strip in the HR diagram can be divided into two groups. One is of the stars of solar-like oscillations, composed of the main-sequence dwarfs, subgiants, and the red giants with low- and intermediate-luminosity, which are unstable in the intermediate- and high-order (nr ≥ 12) p-modes, but stable in the low- order (nr ≤ 5) p-modes. Another is of the Mira-like stars, composed of the luminous red giants and AGB stars, which are just contrary to the solar-like stars, unstable in the low-order (nr ≤ 5) p-modes, but stable in the intermediate- and high-order (nr ≥ 12) p-modes. On the red edge of Cepheid (δ Scuti) insta- bility strip, the oscillations of solar-like and Mira-like stars can be explained uniformly by the coupling between convection and oscillations (CCO). For the low-temperature stars on the right side of the instability strip, the CCO is the dominant excitation and damping mechanism for the low- and intermediate-order p-modes, and the stochastic excitation of turbulence becomes important only for the high-order p-modes of solar-like oscillations.  相似文献   

9.
The variability of period and amplitude of the high-amplitude δ Scuti star YZ Boo was thoroughly investigated based on a comprehensive analysis of new time-series photometry and other available data. Fourier analysis, OCdiagram, and wavelet analysis establish a clear picture for the star's time-dependent behavior in period and amplitude. We detected no additional frequencies being intrinsic to the variable or caused by amplitude/frequency modulation confirming its mono-periodicity. We reveal the pulsation of YZ Boo is quite stable in both period and amplitude over the past 50 years. Short-term variations at cycle level including “anomalous cycles” are present clearly, while long-term variations in period and amplitude at annual base are insignificant. However, we note an increment from 2000 to 2003 in both period and amplitude. In 2000 the amplitude reached the lowest. This is indicated by the Fourier and wavelet results. In the long term, OCfits and wavelet analysis agree with the Fourier results that the period change of YZ Boo is still inconclusive.  相似文献   

10.
We present the V light curves of δ Scuti type variable V350 Peg, obtained between August and October 2005 at the Ankara University Observatory (AUG) and the TüBíTAK National Observatory (TUG). By application of multiple-frequency analyses using Period04 to 7878 photometric V measurements (which are consist of our 747 V data and 7131 V data obtained at Monegrillo Observatory) of V350 Peg, a five-frequency solution was found to be fitted well to the data. In accordance with the computed Q values for V350 Peg, it was found that this star has probably radial mode with l=0 and g-mode oscillations.  相似文献   

11.
UBVRI photometry and spectroscopic observations around the Hα line of the cataclysmic star UX UMa are presented. The analysis of the 9-year photometry shows that the out-of-eclipse brightness of the system and the depth of the eclipse changes in different time scales while the width of the eclipse remains constant. The observed features of the light curves as well as the features of the two-peaked Hα profiles were attributed to an inhomogeneity of the accretion disk. “Spiral arm” model for a fitting of the light curves of UX UMa is proposed. It reproduces well the observational data. The obtained azimuthal extent of the spiral arms is of ∼90° and their light contribution is about 17–30of the total V flux of the disk. The obtained two dense structures at the outer disk covering partially the inner hot disk and the white dwarf at orbital phases ∼0.7 and ∼0.2 is in agreement with the predictions of the theoretical computations.  相似文献   

12.
A radial velocity study of the cataclysmic variable ES Dra (PG 1524+622) is presented. ES Dra is found to have an orbital period of 0.17660 ± 0.00006 day (4.2384 ± 0.0014 h). The mass-losing secondary star of ES Dra is detectable in the spectrum, and it has a spectral type of M2 ± 1. From this, we estimate the absolute magnitude of ES Dra during our spectroscopic observations to have been MR = 6.5 ± 0.5, and its distance to be 720 ± 150 pc. The long-term light curve of ES Dra compiled by the American Association of Variable Star Observers (AAVSO) shows that ES Dra is a Z Cam star, which between 1995 and 2009 spent most of its time in standstill.  相似文献   

13.
New photometry for the eclipsing binary BE Cephei was performed from 2008 to 2011. The light-curve synthesis indicates that it is a marginal-contact binary with a mass ratio of q = 2.340(±0.009) and a degree of contact of f = 6.9%(±2.3%). From the O − C curve, it is discovered that the orbital period changes show a sinusoidal curve superimposed on a downward parabola. The period and semi-amplitude of the cyclic variation are Pmod = 59.26(±0.52) yr and A = 0.d0067(±0.d0010), which may be possibly attributed to light-time effect via the presence of an unseen third body. The long-term period decreases at a rate of dP/dt = −4.84(±0.31) × 10−8 d yr−1, which may result from mass transfer from the more massive component to the less massive one, accompanied by angular momentum loss. With the period decreasing, the degree of contact will increase. Finally, the marginal-contact binary BE Cep may be evolving into a deep-contact configuration.  相似文献   

14.
DG Leo is a spectroscopic triple system composed of three stars of late-A spectral type, one of which was suggested to be a δ Scuti star. Seven nights of observations at high spectral and high time-resolution at the Observatoire de Haute-Provence with the ELODIE spectrograph were used to obtain the component spectra by applying a Fourier transform spectral disentangling technique. Comparing these with synthetic spectra, the stellar fundamental parameters (effective temperature, surface gravity, projected rotation velocity and chemical composition) are derived. The inner binary consists of two Am components, at least one of which is not yet rotating synchronously at the orbital period though the orbit is a circular one. The distant third component is confirmed to be a δ Scuti star with normal chemical composition.  相似文献   

15.
We present the results of the high-resolution spectroscopic observations of the neglected binary system HD 194495 (B3 IV-V+B4 V). A combined analysis of three different photometric data set (Tycho BT and VT photometry, Hp-band data of Hipparcos and V-band data of ASAS3 photometry) and radial velocities indicates that the system has an orbital period of 4.90494 ± 0.00005 days and an inclination of 69 ± 1 degrees. This solution yields masses and radii of M1 = 7.57 ± 0.08 M and R1 = 5.82 ± 0.03 R for the primary and M2 = 5.46 ± 0.09 M and R2 = 3.14 ± 0.08 R for the secondary. Based on the position of the two stars plotted on a theoretical H-R diagram, we find that the age of the system is ?28 Myr, according to stellar evolutionary models. The spectroscopic and photometric results are in agreement with those obtained using theoretical predictions.  相似文献   

16.
Elemental abundances of the moderately rotating B9–A3 stars λ UMa, 59 Her, 14 Cyg and 29 Cyg have been derived in a consistent manner with previous studies of this series from spectrograms obtained with Reticon and CCD detectors. The derived elemental abundances show that λ UMa is a mild Am star, while 59 Her is slightly metal-rich. Although 14 Cyg has values closer to solar than these stars, its subsolar Ca and Sc abundances indicate that it might be the hottest known hot-Am star. 29 Cyg is a metal-poor λ Boo star.  相似文献   

17.
Evolutionary model calculations of 44 Tau, a δ-Scuti star, have been carried out. The star in question is a slow rotator (vsini = 6.8 kms-1).However small it may be, the effect of rotation on the oscillation properties of the star was thought to be worth of studying. Models were evolved with uniform rotation. Radial and non-radial adiabatic oscillation frequencies were calculated. In determining oscillation frequencies rotation has been treated as a perturbation. First order effect has been considered. The possible rotational splittings, due to two rotation speeds, have been calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Mt. Suhora M dwarf survey searching for pulsations in low mass main sequence stars has acquired CCD photometry of 46 M dwarf stars during the first year of the project (Baran et al., 2011). As a by-product of this search hundreds field stars have been checked for variability. This paper presents our initial result of a search for periodic variables in field stars observed in the course of the survey. On the basis of the periodicity and the shape of the light curves, eight new variables has been detected, among which five are δ Scuti stars and three likely RR Lyrae stars. Although variation in one of the stars has been previously detected, it was classified incorrectly. To support our classification, in August 2010, we performed spectroscopic observations to derive spectral types and luminosity classes for all eight variable stars.  相似文献   

19.
In this article, a period analysis of the late-type eclipsing binary VV UMa is presented. This work is based on the periodic variation of eclipse timings of the VV UMa binary. We determined the orbital properties and mass of a third orbiting body in the system by analyzing the light-travel time effect. The O−C diagram constructed for all available minima times of VV UMa exhibits a cyclic character superimposed on a linear variation. This variation includes three maxima and two minima within approximately 28,240 orbital periods of the system, which can be explained as the light-travel time effect (LITE) because of an unseen third body in a triple system that causes variations of the eclipse arrival times. New parameter values of the light-time travel effect because of the third body were computed with a period of 23.22 ± 0.17 years in the system. The cyclic-variation analysis produces a value of 0.0139 day as the semi-amplitude of the light-travel time effect and 0.35 as the orbital eccentricity of the third body. The mass of the third body that orbits the eclipsing binary stars is 0.787 ± 0.02 M, and the semi-major axis of its orbit is 10.75 AU.  相似文献   

20.
Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (Astron. Astrophys. 334:911, 1998) and revised by Karami (Chin. J. Astron. Astrophys. 8:285, 2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating β-Cephei star with 12 M . For an equatorial velocity of 90 km s−1, it is found that the second- and third-order corrections for (l,m)=(5,−4), for instance, are of order of 0.07% of the frequency for radial order n=−3 and reaches up to 0.6% for n=−20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号