首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of time series photometry to search for variable stars in the field of metal-poor globular cluster NGC 4590 (M68). Periods have been revised for 40 known variables and no significant changes were found. A considerable change in Blazhko effect for V25 has been detected. Among nine newly discovered variable candidates, 5 stars are of RRc Bailey type variables while 4 stars are unclassified. The variable stars V10, V21, V50 and V51 are found to be cluster members based on the radial velocity data taken from literature.  相似文献   

2.
The physical parameters of the stars in the central region of the globular cluster M5 (NGC 5904) were determined from UBV photometry using Kurucz's synthetic flux distributions and some empirical relations. It is found that the bluest horizontal branch (HB) stars have higher luminosities than predicted by canonical zero-age horizontal branch models. Parameters of the mass distribution on the HB stars are determined. It is shown that the gap in the blue HB previously reported by Markov et al. in Paper I is probably a statistical fluctuation.  相似文献   

3.
4.
Summary. Galactic globular clusters, which are ancient building blocks of our Galaxy, represent a very interesting family of stellar systems in which some fundamental dynamical processes have taken place on time scales shorter than the age of the universe. In contrast with galaxies, these clusters represent unique laboratories for learning about two-body relaxation, mass segregation from equipartition of energy, stellar collisions, stellar mergers, and core collapse. In the present review, we summarize the tremendous developments, as much theoretical as observational, that have taken place during the last two decades, and which have led to a quantum jump in our understanding of these beautiful dynamical systems. Received 3 August 1996  相似文献   

5.
Carbon-enhanced metal-poor (CEMP) stars are considered to be related to the first generation of stars, and responsible for the chemical evolution of the early Galaxy. More than half of them are in binaries, and could be explained by the binary evolution, but the formation channel of them is still not fully understood. Among the hundreds of CEMP stars, there are nine CEMP RR Lyrae stars identified, and at least seven of which are very likely not binaries. The usual binary star evolution channel is difficult to produce such a single star, particularly that of carbon enrichment. One way in which such a single star might be produced is the merger of a helium white dwarf with a Hertzsprung gap (HG) star. We use a stellar evolution program to calculate the models of the merger remnants, and find that the models can reproduce the observed distribution of these CEMP single RR Lyrae stars in terms of surface temperature, gravity, and carbon abundance. Hence, it is extremely possible that the helium white dwarf and HG star merger model is one of the formation channels of the metal-poor carbon-rich RR Lyrae stars.  相似文献   

6.
7.
The discrepancy between a long distance-scale derived from Hipparcos -based distances to globular clusters via main-sequence fitting to local subdwarfs, and a short distance-scale derived from the absolute magnitude of field RR Lyraes via statistical parallaxes and the Baade–Wesselink method could be accounted for whether an intrinsic difference of about ∼0.1–0.2 mag was found to exist between horizontal branch (HB) stars populating the sparse general field and the dense globular clusters. In this paper we discuss the possible existence of such a systematic difference comparing the period-shifts observed for field and cluster RR Lyraes. Various approaches based on different parameters and data sets for both cluster and field variables were used in order to establish the size of such a hypothetical difference, if any. We find that on the whole very small not significant differences exist between the period–metallicity distributions of field and cluster RR Lyraes, thus confirming with a more quantitative approach, the qualitative conclusions by Catelan . This observational evidence translates into a very small difference between the horizontal branch luminosity of field and cluster stars, unless RR Lyraes in globular clusters are about 0.06 M more massive than field RR Lyraes at same metallicity, which is to be proven.  相似文献   

8.
9.
We discuss theoretical predictions concerning the evolution of globular cluster Population II stars with respect to current estimates of standard errors in the determination of nuclear burning rates. Numerical evaluations are given for the dependence of the turn-off and horizontal branch luminosities on the rate of the relevant nuclear reactions. We conclude that evolutionary predictions appear rather solid in this respect, with a maximum 3 σ error of about 1 Gyr in the evaluation of cluster ages derived from the calibration of the difference in luminosity between the horizontal branch and the turn-off. However, current evaluation of the original He content, as given on the basis of the R -parameter, will need to wait for a much better determination of the 12C(α, γ)16O reaction before reaching a satisfactory accuracy.  相似文献   

10.
We present time-series B , V photometry of NGC 6229, obtained with the purpose of providing the first extensive CCD variability study of this cluster. As a result, we were able to obtain periods for all NGC 6229 variables, with the exception of five stars from the candidate list of Borissova et al. located very close to the cluster centre. Two stars suspected to be variables by Carney, Fullton and Trammell are first-overtone RR Lyrae (RRc) stars, whereas seven of the 12 candidates of Borissova et al. are confirmed variables – three of them being fundamental RR Lyrae (RRab) pulsators, two first-overtone pulsators, one an eclipsing binary (most likely an Algol system) and one a bright star whose variability status could not be satisfactorily determined. A new image subtraction method (ISM) suggested by Alard has been employed which, together with the Welch–Stetson technique, has allowed us to discover twelve new RR Lyrae variables in the cluster, for which ephemerides are provided. Ten of these are RRabs, whereas the other two are RRcs. As originally suggested by Mayer, NGC 6229 is clearly an Oosterhoff type I globular cluster. We also confirm that V8 is a Population II Cepheid of the W Virginis type, and suspect that this is the case for V22 as well. The physical properties of the NGC 6229 RR Lyrae population are contrasted with those of M3 (NGC 5272) using several different methods, including a standard period-shift analysis. Possible differences between these two clusters are discussed.  相似文献   

11.
We give an overview of past and present efforts to make seismology of δ Scuti and γ Doradus stars possible. Previous work has not led to the observational detection and identification of a sufficient number of pulsation modes for these pulsators for the construction of unique seismic models. However, recent efforts including large ground-based observational campaigns, work on pre-main sequence pulsators, asteroseismic satellite missions, theoretical advances on mode identification methods, and the discovery of a star showing simultaneous self-excited δ Scuti and γ Doradus oscillations suggest that we may be able to explore the interiors of these pulsators in the very near future.  相似文献   

12.
13.
The Blazhko effect in RR Lyrae stars is still poorly understood theoretically. Stars with multiple Blazhko periods or in which the Blazhko effect itself varies are particularly challenging. This study investigates the Blazhko effect in the RRc star LS Her. Detailed CCD photometry in the   V , R C  and I C band has been performed on 63 nights during six months. LS Her is confirmed to have a Blazhko period of  12.75 ± 0.02  d. However, where normally the side frequencies of the Blazhko triplet are expected, an equidistant group of three frequencies is found on both sides of the main pulsation frequency. As a consequence, the period and amplitude of the Blazhko effect itself vary in a cycle of  109 ± 4  d. LS Her is a unique object turning out to be very important in the verification of the theories for the Blazhko effect.  相似文献   

14.
15.
We use the results from recent computations of updated non-linear convective pulsating models to constrain the distance modulus of Galactic globular clusters through the observed periods of first-overtone (RR c ) pulsators. The resulting relation between the mean absolute magnitude of RR Lyrae stars 〈 M V (RR)〉 and the heavy element content [Fe/H] appears well in the range of several previous empirical calibrations, but with a non-linear dependence on [Fe/H] so that the slope of the relation increases when moving towards larger metallicities. On this ground, our results suggest that metal-poor ([Fe/H]<−1.5) and metal-rich ([Fe/H]>−1.5) variables follow two different linear 〈 M V (RR)〉−[Fe/H] relations. Application to RR Lyrae stars in the metal-poor globular clusters of the Large Magellanic Cloud (LMC) provides an LMC distance modulus of the order of 18.6 mag, thus supporting the 'long' distance scale. The comparison with recent predictions based on updated stellar evolution theory is briefly presented and discussed.  相似文献   

16.
We report the result of our near-infrared observations ( JHK s) for type II Cepheids (including possible RV Tau stars) in galactic globular clusters. We detected variations of 46 variables in 26 clusters (10 new discoveries in seven clusters) and present their light curves. Their periods range from 1.2 d to over 80 d. They show a well-defined period–luminosity relation at each wavelength. Two type II Cepheids in NGC 6441 also obey the relation if we assume the horizontal branch stars in NGC 6441 are as bright as those in metal-poor globular clusters in spite of the high metallicity of the cluster. This result supports the high luminosity which has been suggested for the RR Lyr variables in this cluster. The period–luminosity relation can be reproduced using the pulsation equation     assuming that all the stars have the same mass. Cluster RR Lyr variables were found to lie on an extrapolation of the period–luminosity relation. These results provide important constraints on the parameters of the variable stars.
Using Two Micron All-Sky Survey (2MASS) data, we show that the type II Cepheids in the Large Magellanic Cloud (LMC) fit our period–luminosity relation within the expected scatter at the shorter periods. However, at long periods (   P > 40  d, i.e. in the RV Tau star range) the LMC field variables are brighter by about one magnitude than those of similar periods in galactic globular clusters. The long-period cluster stars also differ from both these LMC stars and galactic field RV Tau stars in a colour–colour diagram. The reasons for these differences are discussed.  相似文献   

17.
Hipparcos satellite parallaxes for 22 metal-poor field horizontal branch stars with V 0<9 are used to derive their absolute magnitude. The weighted mean value is MV =+0.69±0.10 for an average metallicity of [Fe/H]=−1.41; a somewhat brighter average magnitude of MV =+0.60±0.12 for an average metallicity of [Fe/H]=−1.51 is obtained by eliminating HD 17072, which might be on the first ascent of the giant branch rather than on the horizontal branch. The present values agree with the determinations based on proper motions and application of the Baade–Wesselink method to field RR Lyraes; they are 0.1–0.2 mag fainter than those based on calibration of cluster distances obtained by using local subdwarfs and on alternative distance calibrators for the Large Magellanic Cloud (LMC). The possibility that there is a real difference between the luminosity of the horizontal branch for clusters and the field is briefly commented on.  相似文献   

18.
Summary. During the last decade white dwarfs have become important as tools in many areas beyond traditional stellar physics: from the age determination of the stars in the solar neighborhood to the dating of open clusters and the distance determination of globular clusters. They are primary candidates for the MACHO microlensing events, possibly for a stellar component of the dark halo, and for the supernova Ia progenitors. The recent developments in these areas are reviewed, but some highlights from more “mature” areas such as stellar parameters, mass distributions, magnetic, and pulsating white dwarfs are also summarized briefly. Received 5 October 2001 / Published online 11 January 2002  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号