首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the collimation of radio jets in the high-luminosity Fanaroff–Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum (CSS) and larger-sized objects. The objects span a wide range in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The sizes of the knots in the compact as well as the larger sources are consistent with this trend. We discuss possible implications of these trends. We find that the hotspot closer to the nucleus or core component tends to be more compact for the most asymmetric objects where the ratio of separations of the hotspots from the nucleus r d>2. These highly asymmetric sources are invariably CSS objects, and their location in the hotspot size ratio–separation ratio diagram is possibly the result of their evolution in an asymmetric environment. We also suggest that some sources, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely directed radio jets.  相似文献   

2.
3.
4.
5.
6.
We use the 6C** sample to investigate the comoving space density of powerful, steep-spectrum radio sources. This sample, consisting of 68 objects, has virtually complete K -band photometry and spectroscopic redshifts for 32 per cent of the sources. In order to find its complete redshift distribution, we develop a method of redshift estimation based on the K – z diagram of the 3CRR, 6CE, 6C* and 7CRS radio galaxies. Based on this method, we derive redshift probability density functions for all the optically identified sources in the 6C** sample. Using a combination of spectroscopic and estimated redshifts, we select the most radio luminous sources in the sample. Their redshift distribution is then compared with the predictions of the radio luminosity function of Jarvis et al. We find that, within the uncertainties associated with the estimation method, the data are consistent with a constant comoving space density of steep-spectrum radio sources beyond z ≳ 2.5, and rule out a steep decline.  相似文献   

7.
We present the results of 5-GHz observations with the VLA A-array of a sample of candidate compact steep‐spectrum (CSS) sources selected from the S4 survey. We also estimate the symmetry parameters of high-luminosity CSS sources selected from different samples of radio sources, and compare these with the larger sources of similar luminosity to understand their evolution and the consistency of the CSS sources with the unified scheme for radio galaxies and quasars. The majority of CSS sources are likely to be young sources advancing outwards through a dense asymmetric environment. The radio properties of CSS sources are found to be consistent with the unified scheme, in which the axes of the quasars are observed close to the line of sight, while radio galaxies are observed close to the plane of the sky.  相似文献   

8.
9.
A new sample of very powerful radio galaxies is defined from the Molonglo Reference Catalogue, according to the criteria S 408 MHz>5 Jy, −30°≤ δ ≤10° and | b |≥10°. The sample is selected to have similar properties to the northern 3CR revised sample, and to be visible to a combination of existing northern telescopes such as the Very Large Array radio interferometer and large southern hemisphere telescope facilities. The sample contains 178 sources, of which spectroscopic redshifts are available in the literature for 128. For the remaining 50 sources, new radio imaging, optical imaging and spectroscopic observations are presented to identify the host galaxies and determine their redshifts. With these new observations the total sample is 100 per cent optically identified and redshifts are available for 174 (98 per cent) of the sources. The sample consists of one starburst galaxy, one Seyfert galaxy, 127 radio galaxies and 49 quasars. Basic properties of the sample, such as the distributions of the quasar and radio-galaxy populations in redshift and their locations on the radio power versus linear size ( P − D ) diagram, show no significant differences from the revised 3CR sample. The equatorial location and the high spectroscopic completeness of this sample make it a valuable resource for detailed studies of the nature and environments of these important objects with the new generation of southern hemisphere telescopes.  相似文献   

10.
ROSAT X-ray observations of 3CRR radio sources   总被引:1,自引:0,他引:1  
Over half the 3CRR sample of radio galaxies and quasars has been observed in X-rays with ROSAT pointed observations, and we present results from these observations, discussing many of the sources in detail. The improved spatial resolution of ROSAT over earlier missions allows a better separation of the nuclear and extended components of the X-ray emission. We investigate the relationship between nuclear X-ray and core radio luminosity, and show that our results support a model in which every radio galaxy and quasar has a beamed nuclear soft X-ray component directly related to the radio core. We report evidence for rich cluster environments around several powerful quasars. These X-ray environments are comparable to those of high-redshift radio galaxies.  相似文献   

11.
The recent discovery of radio variability of a quasar on short time-scales (hours) prompts us to examine what is expected in respect of the interstellar scintillation of very compact, extragalactic radio sources. We find that large-amplitude, rapid, variability is predicted at commonly observed radio frequencies (1–20 GHz) over the vast majority of the extragalactic sky. As a guide to assist observers in understanding their data, we demonstrate simple techniques for predicting the effects of interstellar scintillation on any extragalactic source.  相似文献   

12.
We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff–Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu–Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.  相似文献   

13.
We undertake a quantitative investigation, using Monte Carlo simulations, of the amount by which quasars are expected to exceed radio galaxies in optical luminosity in the context of the 'receding torus' model. We compare these simulations with the known behaviour of the [O  III ] λ5007 and [O  II ] λ3727 emission lines and conclude that [O  III ] is the better indicator of the strength of the underlying non-stellar continuum.  相似文献   

14.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

15.
16.
17.
On the redshift cut-off for steep-spectrum radio sources   总被引:1,自引:0,他引:1  
We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the 'most luminous' steep-spectrum radio sources. Though intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF, incorporating distributions in radio spectral shape and linear size, as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between     and     . We find that this model is favoured over a model with similar evolutionary behaviour to that of optically selected quasars (i.e., a roughly Gaussian distribution in redshift) with probability ratios of     and     for spatially flat cosmologies with     and     respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock and Jarvis & Rawlings, in line with the expectations of unified schemes.  相似文献   

18.
We present deep near-infrared images, taken with the Subaru Telescope, of the region around the   z =1.08  radio source 3C 356 which show it to be associated with a poor cluster of galaxies. We discuss evidence that this cluster comprises two subclusters traced by the two galaxies previously proposed as identifications for 3C 356, which both seem to harbour active galactic nuclei, and which have the disturbed morphologies expected if they underwent an interpenetrating collision at the time the radio jets were triggered. We explain the high luminosity and temperature of the diffuse X-ray emission from this system as the result of shock heating of intracluster gas by the merger of two galaxy groups. Taken together with the results on other well-studied powerful radio sources, we suggest that the key ingredient for triggering a powerful radio source, at least at epochs corresponding to   z ∼1  , is a galaxy–galaxy interaction which can be orchestrated by the merger of their parent subclusters. This provides an explanation for the rapid decline in the number density of powerful radio sources since   z ∼1  . We argue that attempts to use distant radio-selected clusters to trace the formation and evolution of the general cluster population must address ways in which X-ray properties can be influenced by the radio source, both directly, by mechanisms such as inverse Compton scattering, and indirectly, by the fact that the radio source may be preferentially triggered at a specific time during the formation of the cluster.  相似文献   

19.
Observations of compact symmetric double sources suggest that these objects with physical scales of order tens of parsecs to kiloparsecs are young radio active galactic nuclei. There is, in general, a striking similarity between the structures of these compact objects and the structures of large evolved radio galaxies although the latter are two to three orders of magnitude larger. This has led to the use of self-similar models of the evolution of radio sources as a framework for interpreting observational data. However, the assumptions on which the self-similar models are based become increasingly less valid on the physical scales which are probed by the observations of the smallest sources. In this paper, the dynamics of sources on these small scales is examined and a model developed which extends earlier work in a self-consistent way to small physical scales. The limit of applicability of the models is identified as is the transition from an early evolutionary phase to the self-similar phase of expansion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号