首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive εNd values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high ε values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation and of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic “oceanic” crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high εNd values of the Archean upper mantle. Using oceanic crustal production proportional to heat productivity, we show that temporary storage in the mantle of that crust, whether basaltic as formed by 5–20% partial melting, or partly komatiitic and formed by higher extents of melting is sufficient to balance an early depleted mantle of significant volume with εNd at least +3.0.  相似文献   

2.
3.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

4.
Mafic and ultramafic xenoliths are well represented within a large basaltic lava field of Stromboli. These basalts, known as San Bartolo lavas, show a high-K calc-alkaline (HKCA) affinity and were erupted <5 ka BP. Xenoliths consist of olivin-gabbro, gabbronorite, anorthosite, dunite, wehrlite and clinopyroxenite. Thermobarometric estimates for the crystallization of gabbroic materials show minima equilibration pressures of 0.17–0.24 GPa, at temperatures ranging from 940 to 1,030°C. These materials interacted with hydrous ascending HKCA basaltic magmas (with temperatures of 1,050–1,100°C) at pressures of about 0.2–0.4 GPa. These pressure regimes are nearly identical to those found for the crystallization of phenocrystic phases within HKCA basaltic lavas. Gabbroic inclusions are regarded as cumulates and represent crystallized portions of earlier HKCA Strombolian basalts.Dunite and wehrlite show porphyroclastic-heterogranular textures, whereas the clinopyroxenite exhibit a mosaic-equigranular texture typical of mantle peridotites. These ultramafic materials are in equilibrium with more primitive basaltic magmas (under moderately hydrous and anhydrous conditions) at pressures of 0.8–1.2 GPa, which is below the crust-mantle transition, located at about 20 km depth under Stromboli.Major and trace element distributions indicate comagmatism between the host basaltic lava and the mafic and ultramafic inclusions. REE patterns for mafic nodules are relatively regular and overlap the field of basaltic lavas (HKCA). They show moderate to high LREE enrichments and moderate enrichments in HREE relative to chonrites. Spider diagrams also show significant similarities between the lavas and the mafic-ultramafic xenoliths as well.During their ascent, primitive Strombolian magmas may be stored in upper-mantle regions where they interact with peridotitic materials and partly differentiate (to give dunite and wehrlite) before migrating to upper crustal levels. In this region, hydrous basaltic magmas (with estimated water contents of 2–3.5 wt%) are stored in the subvolcanic environment, and are allowed to crystallize the gabbroic materials before reaching the surface under nearly anhydrous conditions.An erratum to this article can be found at  相似文献   

5.
The tectonic stresses can significantly affect the propagation of a magma-filled crack. It has been pointed out that the rheological boundaries control the emplacement of magmas through the effect of stress. However, it has not been clarified how the role of rheological boundaries depends on the regional tectonic and thermal states. We have evaluated the role of rheological boundaries under various tectonic and thermal conditions and found that the level of magma emplacement may jump according to the changes in the tectonic force or the surface heat flow. The stress profiles were estimated by a simple model of lithospheric deformation. We employed a three-layer model of the lithosphere; the upper crust, the lower crust and the upper mantle have different rheological properties. A constant horizontal force is applied to the lithosphere, and the horizontal strain is assumed to be independent of depth. When realistic tectonic forces (>1011 N/m) are applied, the rheological boundaries mainly control the emplacement of magma. The emplacement is expected at the MOHO, the upper–lower crust boundary, and the brittle–ductile boundary. For lower tectonic forces (<1011 N/m), the tectonic stress no longer plays an important role in the emplacement of magmas. When the tectonic stress controls the emplacement, the roles of rheological boundaries strongly depend on the surface heat flow. When the surface heat flow is relatively high (>80 mW/m2), the stress in the mantle is quite low and the MOHO cannot trap ascending magmas. For relatively low heat flow (<80 mW/m2), on the other hand, the MOHO acts as a magma trap, and the upper–lower crust boundary acts as a magma trap only when the magma supply rate is sufficiently high. Our results suggest that the emplacement depth can change responding to the change in the tectonic force and/or that in the surface heat flow. This may provide us a key to understand the relation between the evolution of a volcanic region and its tectonic and/or thermal history.  相似文献   

6.
In order to understand the evolution of the crust-mantle system, it is important to recognize the role played by the recycling of continental crust. Crustal recycling can be considered as two fundamentally distinct processes: 1) intracrustal recycling and 2) crust-mantle recycling. Intracrustal recycling is the turnover of crustal material by processes taking place wholly within the crust and includes most sedimentary recycling, isotopic resetting (metamorphism), intracrustal melting and assimilation. Crust-mantle recycling is the transfer of crustal material to the mantle with possible subsequent return to the crust. Intracrustal recycling is important in interpreting secular changes in sediment composition through time. It also explains differences found in crustal area-age patterns measured by different isotopic systems and may also play a role in modeling crustal growth curves based on Nd-model ages. Crustal-mantle recycling, for the most part, is a subduction process and may be considered on three levels. The first is recycling with only short periods of time in the mantle (<10 m.y.). This may be important in explaining the origin of island-arc and related igneous rocks; there is growing agreement that 1–3% recycled sediment is involved in their origin. Components of recycled crustal material, with long-term storage (up to 2.5 b.y.) in the mantle as distinct entities, has been suggested for the origin of ocean island and ultrapotassic volcanics but there is considerably less agreement on this interpretation. A third proposal calls for the return of crustal material to the mantle with efficient remixing in order to swamp the geochemical and isotopic signature of the recycled component by the mantle. This type of recycling is required for steady-state models of crustal evolution where the mass of the continents remains constant over geological time. It is unlikely if crust-mantle recycling has exceeded 0.75 km3/yr over the past 1–2 Ga.Good evidence exists that selective recycling is an important process. Sedimentary rocks preserved in different tectonic settings are apparently recycled at different rates, resulting in a bias in the sediment types preserved in the geologic record. Selective recycling has important implications for the interpretation of Nd model ages of old sedimentary rocks and in the analysis of accreted terranes. Although there is evidence that continental crust was formed prior to 3.8 Ga, the oldest preserved rocks do not exceed this age. It is likely that the intense meteorite bombardment, which affected the earth during the period 4.56–3.8 Ga, coupled with rapid mantle convection, which resulted from greater heat production, caused the destruction and probable recycling into the mantle of any early formed crust.Although crust-mantle recycling is seen as a viable process, it is concluded that crustal growth has exceeded crust-mantle recycling since at least 3.8 Ga. Intracrustal recycling has not been given adequate consideration in models of crustal growth based on isotopic data (particularly Nd model ages). It is concluded that crustal growth curves based on Nd model ages, while vastly superior to those based on K/Ar or Rb/Sr, tend to underestimate the volume of old crust, due to crust-mantle and/or intracrustal recycling.  相似文献   

7.
The Ronda peridotite massif in southern Spain originated from the upper mantle, evidently as a rapidly rising diapir. Major and trace element abundance trends of the peridotites reflect their origin as residues from partial melting of garnet lherzolite. About 5% of the massif consists of mafic rocks, mainly pyroxenites and gabbros. They occur as concordant layers amidst the peridotites, and these layers do not cross-cut each other. However, major and trace element data show that the mafic layers do not have the geochemical characteristics of primary melts. We conclude that crystal/liquid fractionation occurred at high pressures ( > 19 kbar) as melts migrated through magma conduits towards the cooler exterior portion of the diapir. This process generated a sequence of “cumulates” (mainly clinopyroxene + orthopyroxene + spinel and clinopyroxene + garnet) along the walls of the conduits which are now represented by the mafic layers.  相似文献   

8.
Nd isotopic data from the Zimbabwe and Kaapvaal cratons and the Limpopo, Kalahari, Namaqualand and Damara mobile belts imply that over 50% of present-day continental crust in this region had separated from the mantle by the end of the Archaean and that< 10% of continental crust of southern Africa has formed in the last 1.0 Ga. Such a growth rate implies that average erosion rates through geological time were high and that evolution of continental crust has been dominated by crustal growth prior to 1.4 Ga, and crustal reworking since that time. The evolution of average crust is not represented directly by clastic sediment samples but may be determined from sediment analyses if both the time of orogeneses and the average erosion rate are known. Both trace element data from southern Africa granitoids and the high erosion rates implied by the isotopic study suggest that growth of continental crust in the Archaean was by underplating rather than lateral accretion, but arc accretion was the dominant mechanism after 2.0 Ga.  相似文献   

9.
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock.  相似文献   

10.
The syncollisional mafic-ultramafic rocks with Nb, Zr, Ti negative anomalies in the North Dabie terrane have Sr and Nd isotopic compositions with EMI features. Their low and variable initial eNd values ranging from ?2 to ?18 are similar to those of their gneissic country rocks and the ultrahigh-pressure metamorphic rocks in the South Dabie terrane. These Sr and Nd isotopic features are difficult to be interpreted by mantle metasomatism related to oceanic subduction or crust assimilation, but is best explained by the mantle metasomatism related to continental subduction.  相似文献   

11.
The active sources generate seismic waves transmitting appropriate through the deep is underground key and can be used to image Abstract high-resolution subsurface structures.Therefore,an seismic source the factor to active source exploration.In order to study the structure of continental crust and its temporal variations,we selected an artificial seismic source generated from releasing air bubbles in water(airgun source hereinafter)out of a variety and of artificial sources like the is explosion,new electronic sparkers,source hammering,eccentric proven vibration,be heavy-duty train vibration,vibroseis etc.Airgun Three source Fixed a type of artificial that have been to environmentally friendly,safe,and highly efficient.Airgun western Signal China Transmission and Stations(FASTS)have been for built a few years ago in Yunnan,Xinjiang,and Gansu provinces in have been continuously them running several years.Seismic waves generated away by the the airgun sources are highly seismic reproducible waves and stacking in of can produce can good seismograms on 1300 stations km far from source,for instance,an produced Xinjiang FASTS be well about recorded 60 nearly away after 5000 stacking,China covering area of 6 million km2 and penetrating down to of a depth of km.Establishing about 10 FASTSs in would enable long-term illuminate continuous subsurface underground structures,monitoring can all 9.6 million km2 of land area.Treating from airgun sky active sources as lanterns to we achieve the situation with"Beidou surveys the and lantern illuminates underground".  相似文献   

12.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   


13.
The syncollisional mafic-ultramafic intrusions in the North Dabie terrane are characterized by enriched LREE, Rb, Ba, and depletion of high field strength elements, such as Nb, Zr, Ti. The high Ti/& and Ti/Y ratios of their parent magma suggest that crust contamination of magma is not important to the above trace elements characters. They mainly reflect the features of their mantle source which has been modified by metasomatism in subduction environment.  相似文献   

14.
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.  相似文献   

15.
The continental crust is exposed in cross-section at numerous sites on the earth's surface. These exposures, which appear to have formed by obduction along great faults during continental collision, may be recognized by exposures of deep crustal rocks exhibiting asymmetric patterns of metamorphic grade and age across the faults and by distinctive Bouguer anomaly patterns reflecting dipping basement structure and an anomalously deep mantle. From an examination of five complexes which meet these criteria, it is concluded that the most prominent layering in the crust is not compositional but metamorphic. The lower crust consists of granulite facies rocks of mafic to intermediate composition while the intermediate and shallow levels consist predominantly of amphibolite facies gneisses and greenschist facies supracrustal rocks, respectively. Post-metamorphic granitic intrusions are common at intermediate to shallow levels. Position of discontinuities in refraction velocity, where present, commonly correspond to changes in composition or metamorphic grade with depth. The continental crust is characterized by lateral and vertical heterogeneities of varying scale which are the apparent cause of the complex seismic reflections recorded by COCORP. Field observations, coupled with geochemical data, indicate a complex evolution of the lower crust which can include anatexis, multiple deformation, polymetamorphism and reworking of older crustal material. The complexity of the crust is thus the result of continuous evolution by recycling and metamorphism through time in a variety of tectonic environments.  相似文献   

16.
The survival to the present of the Archean nuclei of Precambrian shields requires special explanation if, as seems likely, the rate of heat flow out of the earth was two or three times greater in the late Archean (2.5 b.y. ago) than at present, since such a high heat flux would have melted the base of the Archean crust. It is proposed that there must have existed beneath stable continental crust a root zone (or lithosphere, or tectosphere) at least 200 km thick which has acted as a thermal buffer between the crust and the convecting mantle; this is virtually the same model as has been proposed to explain the present distribution of heat flow between continents and oceans. The strong temperature dependence of silicate rheology insures that the mantle temperature at the base of the root zone was no more than about 150°C higher in the late Archean than at present; the greater Archean heat flux would have been removed mainly through faster sea-floor spreading. To have survived, the root zone must be mechanically and chemically distinct from the rest of the mantle, and its formation was probably intimately related to the differentiation and stabilization of the continental crust.  相似文献   

17.
Helium, volatile fluxes and the development of continental crust   总被引:5,自引:0,他引:5  
Mantle-derived helium has a substantial primordial component and is readily distinguished from radiogenic “crustal” He by its isotopic composition. For some years it has been known to be escaping at mid-ocean ridges and more recently it has been shown to be escaping through the continental lithosphere in tectonically active areas, particularly those undergoing extension or volcanism. The C/3He value observed in ocean ridge basalts and continental gases that contain only mantle He, is close to 109. This is believed to be a typical value for the upper mantle. Other continental gases have ratios that vary widely and are diluted with crustal carbon. The ratio C/4He decreases with time through the production of radiogenic4He, and depends on the C/(U + Th) value. Departures from the average may result from exceptional concentrations of U and Th or from C/He fractionation.There is circumstantial evidence for a steady-state flux of He through the continents that may be estimated from He accumulations in lakes and aquifers. The mantle component of such fluxes is calculated from their3He content. If the mantle component is accompanied by C in the proportion indicated above, and extensional areas make up as little as 10% of the crust at any one time, then about 10% of the present inventory of crustal C would have been added to the crust every Ga by this means. C/K values for the crust and mantle are today very similar, and K may therefore scale as C. K/U and K/Th vary within narrow limits and they may scale with C also.The most plausible means of scavenging He from the mantle is by partial melting: He is expected to enter the first few percent of liquid formed, and the loss of mantle He and C at the surface is associated with the emplacement of basaltic bodies in the lower crust carrying K, U and Th. Some limits are placed on the thickness of basalt added in extensional areas.Mantle-derived CO2 has often been invoked as a means of dehydrating continental crust to produce granulites. However, the amounts of CO2, estimated from mantle He fluxes, entering the crust in those active tectonic areas studied so far appears too small to produce dehydration on a regional scale. The addition of mantle-derived material to the crust in extensional zones is a first-order crustal growth process the importance of which has previously been underestimated.  相似文献   

18.
Structure and composition of the continental crust in East China   总被引:14,自引:0,他引:14  
Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elements in the upper crust in East China are estimated. The estimates are based on sampling of 11 451 individual rock samples over an area of 950 000 km2, from which 905 large composite samples are prepared and analyzed by 13 methods. The middle, lower and total crust compositions of East China are also estimated from studies of exposed crustal cross sections and granulite xenoliths and by correlation of seismic data with lithologies. All the tectonic units except the Tarim craton and the Qinling orogen show a four-layered crustal structure, consisting of the upper, middle, upper lower, and lowermost crusts. P-wave velocities of the bulk lower crust and total crust are 6.8–7.0 and 6:4–6.5 km/s, respectively. They are slower by 0.2–0.4 km/s than the global averages. The bulk lower crust is suggested to be intermediate with 58% SiO2 in East China. The results contrast with generally accepted global models of mafic lower crusi. The proposed total crust composition in East China is also more evolved than previous estimates and characterized by SiO2=64%, a significant negative Eu anomaly (Eu/Eu* = 0.80), deficits in Sr and transition metals, a near-arc magma La/Nd ratio (3.0), and a calculatedμ(238U/204Pb) value of 5. In addition, it has the following ratios of element pairs exhibiting similar compatibility, which are identical or close to the primitive mantle values: Zr/Hf=37, Nb/Ta=17.5, Ba/Th=87, K/Pb=0.12x104, Rb/Cs=25, Ba/Rb=8.94, Sn/Sm=0.31, Se/Cd=1.64, La/ As=10.3, Ce/Sb=271, Pb/Bi=57, Rb/TI=177, Er/Ag=52, Cu/Au=3.2×104, Sm/Mo=7.5, Nd/W=40, CI/Li=10.8, F/Nd=21.9, and La/B=1.8. Project supported by the National Natural Science Foundation of China (Grant Nos. 49625305, 49573183, 49673184, 49794043), the State Comission of Education, the Ministry of Geology and Mineral Resources of China (Grant No. 850514), the Open Laboratory of Constitution, Interaction and Dynamics of the Crust-Mantle System, and the Alexander-von-Humboldt Foundation of Germany.  相似文献   

19.
The upper part of the Deccan Traps sequence (Bushe to Mahabaleshwar Formations) shows a statistically significant tendency for the most mafic lavas to be the most contaminated by crustal materials. This is the reverse of the relationship shown by suites evolving by contamination accompanied by fractional crystallisation (AFC). The observed correlations (e.g. between Mg-number and Sr isotope initial ratios) are partly an accidental consequence of the fact that the most mafic lavas are more abundant in the lower part of the sequence, while contaminant availability declines in the upper part. It is probable, however, that the correlations are augmented by increased contamination of hotter magma batches during ascent through dykes, a process during which fractional crystallisation is suppressed by magmatic turbulence. The absence of AFC relationships suggests that most of the contamination took place during the ascent stage rather than in a magma chamber. Other continental flood basalt provinces such as the Parana and Etendeka do show AFC relationships, and it is speculated that this may be a result of magma chamber contamination coupled with flow rates which prevent contamination during ascent.  相似文献   

20.
Faulting and seismicity in the upper continental crust require considerable differential stresses. Application of experimentally developed friction, fracture and flow laws shows that high differential stresses can only exist in the uppermost crust. Direct hydraulic fracturing measurements in deep boreholes seem to support this rock mechanics conclusion. The experimental data base presently consists of approximately 500 hydrofrac tests conducted in about 100 boreholes at about 30 different geographical locations. To illustrate the variation of measured stresses with depth, the data are expressed as dimensionless horizontal stresses in the formS H,h/Sv=(/z)+, whereS v=gz Extrapolation of the experimental data to greater depth shows that the minor horizontal stress approaches the valueS h/Sv=0.5 which limits friction on wet faults, and that the major horizontal stress approaches a value close toS H/Sv=1 at rather shallow depth (5 to 10 km.). This limits faulting and seismicity in most of the upper crust to either strike-slip or normal faults. The lower boundary for seismicity is mainly dependent on tectonic strain accumulation and rock creep at the environmental conditions at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号