首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
伊犁河谷是新疆地区暴雨多发且暴雨强度最强的地区。本文以该地区的一次特大暴雨过程为例,利用观测资料以及WRF高分辨率数值模拟结果对该次暴雨过程的环流背景及不稳定条件进行了分析。结果表明:(1)此次降水过程发生在对流层高层南亚高压“双体型”,中层中高纬度“两脊一槽”以及两个中亚低涡发展移动的环流形势下。在伊犁河谷特殊的向西开口的喇叭口地形作用下,中心位于哈萨克斯坦的中亚低涡导致伊犁河谷低层为偏西风,中心位于塔里木盆地的中亚低涡使得伊犁河谷中层为偏东风,导致伊犁河谷内中低层水平风的垂直切变增强;伊犁河谷内,地形及哈萨克斯坦中亚低涡环流的共同作用形成了低空辐合线,辐合线附近形成的辐合区正好与高空急流辐散区垂直叠加,引发河谷内的上升运动增强。低层西风将水汽输送进河谷,并在河谷内迎风坡附近堆积,上升运动增强后导致河谷内堆积的水汽得以抬升。(2)WRF模拟结果分析显示,散度分布、垂直风切变、水汽及热力层结分布等对降水产生均有重要贡献。通过对湿位涡垂直及水平分量的分析得出热力层结影响的对流不稳定对前期降水的产生有影响,同时,垂直风切变影响的对称不稳定对降水增强维持有重要作用。位势散度分析进一步指示出整个降水区低层的对流不稳定主要是由于位势散度的垂直切变部分造成,而位势散度的散度部分能加强河谷内小地形背风坡处的对流不稳定,说明整个降水演变过程中,动热力因子的相互作用共同影响了降水强度和落区。  相似文献   

2.
一次飑线过程对流稳定度演变的诊断分析   总被引:5,自引:3,他引:2  
周围  包云轩  冉令坤  王勇 《大气科学》2018,42(2):339-356
针对2016年5月2日发生在华东地区的一次飑线过程,利用WRF模式进行高分辨率数值模拟。在成功模拟飑线发生、加强和移动的基础上,对此次过程中对流不稳定特征以及引起对流稳定度变化的原因进行诊断分析。结果表明:(1)在降水发生前,低层大气表现为对流不稳定;降水发生后,对流不稳定能量得到释放,大气趋于稳定。为了分析引起对流稳定度变化的原因,推导了局地直角坐标系中相当位温垂直梯度的倾向方程,其中位势散度是引起位势稳定度局地变化的主要强迫项。在弱降水区,低层位势散度为负值,有利于增强位势不稳定;强降水区及其前沿为位势散度正值区,倾向于抑制位势不稳定。在强降水区低层,位势散度的主要分量为垂直风切变项,代表垂直风切变和大气湿斜压性的综合作用;高层的主要分量为散度项,代表水平散度和位势稳定度的耦合作用。(2)位势散度能综合表征降水区上空垂直风切变、大气湿斜压性、水平辐合辐散和大气位势稳定度变化等特征,因而与降水联系紧密。本文利用位势散度对飑线降水进行预报,结果表明,位势散度与小时观测降水在时间和空间上吻合较好,对降水区有一定的指示意义,可以为飑线降水业务预报提供参考。  相似文献   

3.
运用自动站6 h降水资料和NCEP/NCAR的0. 25°×0. 25°再分析数据,着重分析了1513号台风"苏迪罗"及其残涡影响江苏期间强降水落区的分布特征,以及强降水落区与风场、涡散度、水汽通量散度等要素的对应关系。分析结果表明:强降水多分布在台风低层环流中心东北侧,风场围绕环流中心非对称分布造成辐合和正涡度在此处集中,进一步导致水汽在同一地区辐合,动力条件和水汽条件在同一地区叠加是强降水区位于环流中心东北侧的直接原因。单一等压面上的负散度和正涡度均可以在一定程度上指示出强降水站点位置,不同层次涡散度场的涵盖范围有所不同,三层算术平均后的涡散度较单一层次的指示性更为准确。"苏迪罗"登陆后在北上过程中接近中高纬西风带系统,环境风垂直切变逐渐增强且方向稳定,强降水落区基本位于850 h Pa至200 hPa间切变矢量的顺切变左侧,这一特征对判断登陆台风强降水落区具有一定的指导意义。  相似文献   

4.
甘肃河西地区一次强寒潮天气个例诊断分析   总被引:1,自引:0,他引:1  
2008年4月19~20日,受西伯利亚东移南下的强冷空气影响,河西地区出现了自2001年以来最强的1次寒潮天气.利用MICAPS资料分析了这次强寒潮爆发时的环流形势演变特征.同时采用NCEP/NCAR 2.5°×2.5°每天4次再分析资料,计算了60~105°E、35~60°N区域内,4月15日08时~20日08时300 hPa高空急流,500 hPa涡度、温度平流、垂直速度,700 hPa水汽通量散度等物理量.结果表明:此次强寒潮的爆发与高空急流在东移南下过程中逐渐加强有关,500 hPa正涡度区与槽前锋区配合一致,更有利于引导强冷空气东移南下.低层强冷平流对地面加压降温作用至关重要,垂直速度与大气层结稳定度有关.700 hPa水汽通量散度场分布特征对寒潮天气条件下的降水形成有明显影响,水汽通量散度极小值区域均有降水,最大值区域无降水而有沙尘天气.  相似文献   

5.
利用NCEP逐日资料和常规观测资料对2009年7月30~31日一次四川盆地南部强降雨过程进行诊断分析。结果发现:西南涡在700hPa上表现得比较明显,当发展极强时,甚至在500hPa也出现闭合环流;西南低涡涡区内均有降水发生,强降水中心位于涡区东北侧。低层水汽通量散度负值辐合区的分布不仅对相应时段降水落区指示较好,而且对于未来6h雨区分布也有一定参考性,可作为短临预警指标。强降雨区与强正涡度辐合上升运动区有较好的对应关系,对流层低层湿位涡的负值区对降水落区指示较好,强降水区出现在中高层正值MPV1下沿最强区,以及MPV2正负值交界区。   相似文献   

6.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   

7.
黄楚惠  李国平 《高原气象》2009,28(2):319-326
利用NCEP 1°×1°再分析资料以及常规观测的地面和高空资料,应用螺旋度和非地转湿Q矢量原理,对2000年7月9~15日一例东移高原低涡产生强降水过程进行了天气动力学诊断分析.结果表明:500 bPa z-螺旋度水平分布对低涡中心的移动、降水落区和强降水中心的分布具有较好指示性,强降水中心发生在500 hPa z-螺旋度梯度值最大的区域.z-螺旋度分布能较好地反映暴雨发生时大气的动力学特征,暴雨区上空,高层负涡度辐散与低层正涡度辐合相配合,是触发暴雨的动力机制.相对螺旋度更能全面地反映降水落区及降水中心分布情况,并对未来6 h后的降水落区及走向具有较好的预报性,强降水中心发生在相对螺旋度正、负中心连线梯度最大值的正值一侧.低层非地转湿Q矢量散度的辐合区与降水区相对应,辐合中心与强降水中心基本吻合,是降水落区定性诊断分析的有力工具;湿Q矢量散度的垂直分布对未来6 h降水的落区和移动预报提供了很好的参考信息.  相似文献   

8.
利用NCEP/NCAR Reanalysis 1°×1°格点资料和MICAPS实时观测资料,使用水汽散度垂直通量、湿螺旋度等新型诊断物理量,对2009年8月2~4日发生在重庆地区由西南低涡东移引发的暴雨做了综合分析。结果表明:水汽主要在大气低层850hPa附近积聚,上升运动强,水汽的辐合上升区域与降水大值区较吻合。500hPa湿z-螺旋度负值区水平分布与相应时段降水落区和强降水中心的分布对应较好,垂直分布上:暴雨区低层正涡度、水汽辐合旋转上升与高层负涡度、水汽辐散相配合,是触发暴雨的有利动力机制。   相似文献   

9.
台风Morakot(2009)暴雨中关键尺度位涡的诊断分析   总被引:1,自引:1,他引:0  
采用二维小波变换方法对格点分析资料进行多尺度分解,诊断分析台风Morakot(2009)登陆福建省霞浦市过程中位涡的多尺度特征。在此基础上,讨论了多尺度位涡正压项通量散度对位涡正压项局地变化的贡献。研究结果表明,在此次台风登陆过程中位涡主要包含第4、5关键尺度(理论波长范围为96.4~160.67 km)动力扰动和第3、4关键尺度(理论波长范围为64.27~128.54 km)热力扰动的综合信息。由于关键尺度位涡正压项的强度大于斜压项,因而位涡主要体现了第4、5动力尺度垂直涡度与第3、4热力尺度广义位温垂直梯度的耦合作用。第4、5动力尺度西南扰动气流为台风暴雨提供充足的水汽供应,在台风环流西北侧产生低层辐合、中高层辐散,为强对流系统的发生提供有利动力条件。第3、4热力尺度的广义位温扰动一方面增加降水区大气湿斜压性,另一方面在降水区低层形成位势不稳定,为强对流的发展提供潜在不稳定能量。位涡正压项方程强迫项的分析表明,关键尺度位涡正压项通量输送对位涡正压项局地变化有一定贡献,影响位势稳定度的变化。在台风登陆后,关键尺度位涡及位涡正压项通量散度都有所减小,使得垂直涡度和位势稳定度的变化趋缓。  相似文献   

10.
广东前汛期西风槽暴雨个例的强度及落区   总被引:33,自引:25,他引:8  
利用实况观测资料和NCEP的1°×1°格点资料,分析了2005年5月7~10日广东暴雨过程。结果显示:这次暴雨过程主要是由500 hPa西风波动中先后两个小槽东移逼近,配合850 hPa西南风加强造成的。降水中心主要落在槽前正涡度区右侧、涡度梯度最大的区域;暴雨落区与西南风急流位置的对应关系和造成西南风加强的系统有关;在影响系统起作用的背景下,降水落区与垂直风速切变的最大中心重合,与垂直风向的顺时针切变密切相关;天气系统相联系的低层负螺旋度越深厚,降水量越大,雨势越强。  相似文献   

11.
利用常规气象观测资料和NCEP 1°×1°间隔6 h再分析资料,采用天气学诊断分析方法,对2012年4月23-24日河南省一次春季暴雨的形成机制进行分析,结果表明:高纬冷空气沿贝加尔湖低涡后部偏北气流南下,在河套西部形成深厚低槽,低槽携带冷空气东移,在河南境内与强盛的西南急流汇合,是本次暴雨过程的天气背景。冷空气的侵入有利于西南涡的加强,而南支槽前的正涡度平流促使西南低涡沿切变线向东北方向移出,使得切变线南侧西南低空急流加强,为暴雨的发生提供了有利的动力与水汽条件。短时强降水发生前,低层能量场出现明显辐合,当低层能量场转为辐散时,能量释放,有利于短时强降水的出现。高层辐散、低空辐合的动力条件配置,使得大范围垂直上升运动加强,特别是高层散度场的下伸,利于降水释放潜热,增加大气的不稳定,进而利于强降水的发生。850 h Pa垂直螺旋度中心大值区域能很好地反映切变线、急流等与低涡相联系的天气系统,其中心强度的迅速变化能较好地指示降水的落区和强度。  相似文献   

12.
利用常规气象观测资料、NCEP/NCAR再分析资料和多普勒天气雷达资料,对2016年8月6—8日潍坊一次强对流天气的成因和预报误差进行了分析,结果表明:1)500 hPa冷涡底部低槽、850 hPa低涡切变线和地面倒槽是主要影响天气系统, 数值预报对此次天气过程的影响系统预报偏差大,而预报员对数值预报依赖程度高是此次预报失误的主要原因;2)850 hPa以下强的水汽辐合是强降水发生的重要条件,低层辐合和高层辐散配置导致的强垂直上升运动是暴雨产生的动力机制,位势不稳定因中高层的冷空气入侵下沉得以加强;3)列车效应和强回波维持少动是造成短时强降水的重要回波特征,逆风区的发展和移动对于判断强降水的落区有指示作用,多普勒雷达反演风场中的中尺度辐合线是导致局地强降水发生的直接原因;4)风廓线雷达水平风场可以连续地反映降水过程中风场垂直结构及其变化,降水发生前探测高度明显升高,中高层冷空气侵入时间与强降水的时段相对应。  相似文献   

13.
利用常规观测资料、自动站资料、雷达及NCEP 1°×1°资料,在诊断2013年4月19日河北省一次回流多相态降水过程成因的基础上,总结了降雪漏报的原因。结果表明:冀中南降水区位于700hPa切变线南侧、700 hPa西南低空急流与850 hPa东北风急流交汇处,暖湿空气在冷垫上爬升和急流的次级环流为降水提供了动力条件,低空急流为降水提供了水汽条件。整层大气可降水量及变化可作为降水预报的重要参考。对比分析雨区和雪区的温度廓线发现:通过温度平流分析温度的垂直分布和演变比单独分析温度特性层高度对于辨别降水相态更为可靠,而雷达风廓线资料可作为识别冷暖平流进而辨别大气温度层结变化的有益补充。本次降水相态预报出现偏差的主要原因是对温度垂直分布和演变判断不够准确。  相似文献   

14.
利用常规气象观测资料、自动站观测资料和探空资料等,对所选取的2004—2013年共78例降水过程进行分析,将中部区域春秋季降水过程分为3个类型:低槽/切变线冷锋型、低涡(西南涡/西北涡)气旋型、低槽/切变线冷高压型。统计结果表明,中部区域春秋季降水出现概率最多的类型依次为切变线冷锋型、低槽冷锋型和西南涡类型,各天气类型的雨区移动方向均以自西向东为主,低层700 h Pa和850 h Pa多存在西南或偏南急流,水汽主要来自于孟加拉湾。分析中部区域3种主要降水类型特征及其增雨潜力区位置发现:1)低槽冷锋类型降水一般出现在500 h Pa和700 h Pa低槽前部、地面冷锋后部,多为连续性降水;其增雨潜力区主要位于500 h Pa低槽前部、700h Pa槽前和西南急流出口区的左侧,以及地面冷锋后部或锋线附近区域。2)切变线冷锋类型降水多出现在地面冷锋后部、低层切变线两侧附近;其增雨潜力区主要位于700 h Pa和850 h Pa两切变线之间且较靠近700 h Pa切变线一侧、急流出口左侧的带状区域。3)西南涡波动类型降水一般出现在低涡中心及700 h Pa暖式切变线两侧附近,降水持续时间较长;其增雨潜力区主要位于700 h Pa和850 h Pa低涡中心附近及暖式切变线北侧区域。  相似文献   

15.
利用NCEP/NCAR再分析数据和其他常规观测数据,对湖北省两类典型极端降水型(南北气流汇合型、南北槽叠加型)的天气背景及气象因子异常特征进行分析,结果表明:南北气流汇合型500 hPa上形成南北气流汇合形势,低层切变线南侧南风发展异常强盛,地面上冷锋入暖槽形成静止锋,动力因子(850 hPa涡度、200 hPa散度)和水汽因子(大气可降水量)异常特征显著;南北槽叠加型500 hPa上形成南北槽叠加形势,低层或边界层形成显著低涡切变,地面上暖低压强烈发展,动力因子(200 hPa散度、925 hPa涡度)和不稳定因子(700 hPa温度平流)异常度比例偏高。最后给出了两类集天气背景与气象因子异常度配置于一体的极端降水天气概念模型。  相似文献   

16.
一次强风暴的垂直环境特征数值模拟分析   总被引:4,自引:2,他引:4  
陈力强  周小珊  杨森 《气象》2004,30(9):3-8
应用MM 5模式对东北冷涡诱发的 2 0 0 2年 7月 1 2日强风暴进行了数值模拟 ,较成功地模拟出中尺度强对流风暴。发现冷涡后部中层干冷空气绝热下沉是东北冷涡 70 0hPa附近干暖盖形成和维持的重要机制 ,而低层暖湿气流爬升及干暖盖的抑制作用是东北冷涡强对流不稳定能量积累的重要机制。风暴发生前持续的低层西南风到中层西北风的风垂直切变产生的差动平流 ,加剧了层结不稳定 ,而风暴临近风垂直切变方向的快速逆转使热成风不平衡 ,必须通过激发垂直环流以适应其变化 ,对风暴发展有重要作用。  相似文献   

17.
利用2016年5月2—4日NCEP的FNL 1°×1°再分析资料和GDAS的1°×1°再分析资料、地面观测资料,运用天气学分析、等熵位涡、物理量诊断和水汽来源追踪等方法,从大尺度环流背景、水汽源地和输送、动力和热力机制、等熵位涡等方面对2016年春季一次地面气旋爆发性发展导致的东北地区暴雨天气过程进行了分析。结果表明:位于40°N附近的黄淮气旋北上加强发展,2日14时至3日14时中心气压下降24 hPa,超过爆发性气旋的定义标准。500 hPa高空槽快速加强发展为闭合低涡,低空切变线加强发展为低空低涡,其东部形成明显的低空急流,为暴雨区提供水汽和热量,为东北地区典型的暖式切变降水。等熵位涡自320 K高层向305 K低层输送下传,并逐步向南向东移动,高空正位涡的下传促使地面气旋快速发展,上升运动加强,有利于暴雨的出现。比湿在6 g·kg^(-1)以上对东北地区春末夏初暴雨预报有一定的参考意义。水汽主要来源于东海、黄海及西北太平洋。暴雨区与850 hPa水汽通量散度的负值区、700 hPa垂直速度和850 hPa绝对涡度大值区较为一致,强降水区与850 hPa相当位温密集带和暖区锋生区相对应,降水位于能量锋区以及偏暖区一侧。  相似文献   

18.
新疆中天山一次城市暴雪过程诊断分析   总被引:1,自引:0,他引:1  
采用NCEP逐日4次1°×1°再分析资料和Micaps常规观测等资料,对2011年3月发生在新疆中天山城市暴雪过程进行天气学诊断分析。诊断计算包括:中尺度分析、水汽通量、水汽通量散度、水平散度、垂直速度、高低空风场、螺旋度、假相当位温等。结果表明:暴雪是南北两支锋区在中亚地区交汇后东移发展造成的,降雪前乌鲁木齐城区出现东南大风,地面强烈减压升温为暴雪天气触发不稳定能量提供了热力条件,500 hPa有>30 m·s-1的西南急流,700 hPa存在低空切变,散度和垂直速度表现为明显的高层辐散、低层辐合的对称结构。降雪强盛期整层呈现上负下正的垂直螺旋度对,θse低能舌伸至200 hPa,700 hPa至400 hPa维持θse高能舌区,湿层厚度高达300 hPa。这种物理量场的配置有利低层湿空气聚合及向上的抬升运动,为暴雪的产生提供了必要条件。此次冷空气以偏西路径影响城区,在冷空气明显的条件下,受城市热岛效应影响,强降雪容易发生在温度较高的城区,同时降水中心倾向于出现在锋区的位置。  相似文献   

19.
东北冷涡诱发的一次连续强风暴环境条件分析   总被引:14,自引:8,他引:6       下载免费PDF全文
从深对流发展必须满足的对流层低层有足够强的湿层、层结不稳定和足够强的触发机制出发,对2002年7月11~15日由东北冷涡诱发的一次连续强风暴生成的环境条件进行了诊断分析。结果表明:低层暖湿条件是冷涡强对流预报的关键,强大的冷涡由于冷性层结深厚难以诱发强的对流性天气,而其分裂的次涡度中心或弱的冷性低涡配合低层暖湿气流常常产生突发性强对流性天气;强的风垂直切变引发的斜压不稳定和垂直运动是强对流触发和维持的重要条件,风暴发生前边界层到500 hPa风向随高度顺转超过90°,随着对流性天气的发展,850 hPa以上风垂直切变逐渐减小,而850 hPa以下可能受低层冷丘产生中高压的影响,切变有增大的趋势;冷涡诱发的强对流性天气常常位于高空急流出口区左侧,但在实际预报业务中需要配合散度场来进行综合判断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号