共查询到20条相似文献,搜索用时 70 毫秒
1.
基于我国自动站与CMORPH降水产品融合的逐时降水资料和NCEP再分析资料,利用自组织特征映射方法对2008—2014年大别山地区极端降水天气事件的天气背景进行了分型研究。结果表明大别山地区极端降水背景环境的类型主要可分为三类,分别是西南强气流型(类型Ⅰ)、副高西北侧气流型(类型Ⅱ)和偏南强气流型(类型Ⅲ)。其中,类型I和类型Ⅱ的极端降水分别集中在6—8月和7—9月,代表了夏季极端降水,而类型Ⅲ的极端降水主要出现在3—6月及10—12月,属于春秋季节的极端降水。通过分析大别山地形与不同类型降水场及背景场的配置关系发现:(1)迎风坡降水是类型I极端降水的主要原因,中层的高湿度、强气流为极端降水提供水汽和抬升条件;(2)类型Ⅱ的极端降水是由气流过大别山西北侧较低山脊时在山脊前和山脊后形成,西太平洋副热带高压的北抬和西进是导致此类环流背景的重要原因;(3)偏南气流与大别山及其西南方地形的配置使得类型Ⅲ的极端降水主要分布在大别山南侧往西南方向。 相似文献
2.
对华北区域的天气气候学研究,有助于理解该区域大气环流场与地面要素场之间的相互联系。利用自组织神经网络算法(SOMs),基于1958—2002年夏季ERA-40日平均海平面气压距平场(MSLPA),对华北区域的海平面气压场进行分型,研究其天气气候特征。36种典型地面环流形势被识别出来,包括强北高南低、强西高东低槽、强西北低东南高和强东部高压西伸4种极端类型,以及它们之间的过渡型。天气型的空间特征分析表明二维自组织图上天气型的对称性体现了华北区域天气气候的一般性特征,而非对称性则体现其独特性。天气型演变特征分析表明高、低压系统越强,或以高压系统活动为主时,华北地区的天气形势相对稳定,反之则转变较快。年际变化分析指示出其中6种天气型出现较明显的年际线性变化趋势。最后,分析天气型相应的降水分布特征,表明区域内不同地区的降水来自不同天气型的影响,地面环流场的细小差别将会造成地面强降水中心位置的较大不同,且地形的影响将进一步放大该差别。上述分析结果采用更完整和更高时间分辨率的资料,定量化地研究华北区域夏季的天气分型特征,拓展其天气气候学研究。研究成果可用于发展客观化的数值模式典型天气过程识别技术,以及作为区域气候情景分析的基础。 相似文献
3.
利用1997—2015年吉林省春夏期(4—7月)逐日气象站地面观测资料,以气温、气压、相对湿度、水汽压、风速为协变量,建立各站点逐日降水量的基于自组织映射神经网络(Self-Organizing Maps,SOM)的统计预测模型;分析吉林省春夏期的主要天气模态,研究逐日降水和天气模态之间的关系,并基于此关系提出逐日降水量的蒙特卡罗模拟方法。结果表明:SOM对天气模态的分型质量较好,邻近天气模态的累积概率分布较相似,距离较远的天气模态累计概率分布差异较大。各天气模态下无降水的概率与日降水量区间宽度的相关系数为-0. 94,显著性水平小于0. 01。基于降水量累积概率分布,20种天气模态被划分成4类,并与降水易发程度和逐日降水量完全对应。在此基础上,对吉林省24个站点逐日降水量进行蒙特卡罗模拟,并进行预测性能分析。平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Square Error,RM SE)的中位数分别为3. 12 mm和6. 13 mm,SBrier和Ssig分别为0. 06和0. 51,站点的逐日降水量预测性能整体较好。MAE和RMSE分布呈现东南大西北小,去除降水自然变异差异的影响,所有站点的误差都较小; SBrier和Ssig没有明显的空间分布特征。 相似文献
4.
利用长江中下游24个代表站点的月降水量、NCEP/NCAR全球海温和向外长波辐射(OLR)以及国家气候中心整编的500hPa位势高度场资料,运用对比分析方法,探讨了长江中下游1月和夏季降水的关系,分析了海温和大气环流异常及其演变对降水的影响。结果表明:长江中下游1月和夏季降水有很好的关系,且冬春季海温、大气环流和热带副热带对流活动异常的差异及其演变的不同,对夏季降水有不同的指示意义。 相似文献
5.
通过对1982-1991年10年高空、地面天气图及许昌市辖4站地面降水资料的分析,对影响许昌的168次中雨以上降水过程前的高空及地面天气形势划分出了六种天气型,并简要指出了各型的高空、地面天气形势特征. 相似文献
6.
长江中下游夏季极端降水指数的变化特征 总被引:1,自引:0,他引:1
利用长江中下游地区66个气象站逐日降水资料,通过经验正交函数分解分析中雨以上日数极端降水指数及形成的原因。结果表明:长江中下游中雨以上日数主要表现为全区一致型、南北反向型,且两种分布形势均存在准2 a周期的年际变化和年代际变化;中雨以上日数在1990s开始显著增长,2000s以来,长江以北地区偏多,长江以南地区偏少;2000—2011年,我国东部经向上仍旧存在"反气旋—气旋"水汽输送异常,蒙古高原反气旋型水汽输送加强,引起雨带停滞在长江以北,造成长江以南地区中雨以上日数偏少。 相似文献
7.
为了了解重庆秋冬季节空气污染天气的环流特征,利用NCEP再分析资料对污染天气过程地面气压场应用自组织神经网络算法(SOM)进行天气分型,并经过主观对比分析,总结出3类典型天气型:均压型、低压型、高压底部型;其中均压型分为2小类:两冷锋间的均压场、弱高压区的均压场;高压底部型按冷高压中心位置分为3小类:北方高压型、西北高压型、东北高压型。比较分析发现高压底部型大气污染物浓度最高,空气污染最为严重。应用常规观测资料和L波段探空资料分析发现:各类污染天气型表现为地面静风频率高,近地层水平风速小;逆温出现概率高,大气层结稳定,大气边界层高度低等特点。从大尺度环流背景、动力、热力气象条件及后向轨迹模拟分析了3类典型污染天气过程形成原因,为重庆地区空气污染潜势预报及浓度预报提供参考依据。 相似文献
8.
副高持续异常对长江中下游夏季降水的影响 总被引:7,自引:0,他引:7
分析了从上一年夏季以来 5 0 0 h Pa高度距平场的持续变化对当年长江中下游地区汛期降水的影响。结果表明 ,前期副热带地区高度距平累积指数与长江中下游地区汛期降水有密切的关系 ,与全国降水的分布也有一定的联系 相似文献
9.
利用1979-2015年海洋和大气再分析资料,基于夏季太平洋-日本遥相关型(PJ)指数,讨论了PJ指数在极端正负年份长江中下游降水位置和强度异常的不对称响应及其可能原因。结果表明:在PJ负位相年(对应El Niňo次年),长江中下游降水显著偏多,中心分别位于江淮流域和日本南部;而在PJ正位相年(对应La Niňa次年),长江中下游降水减少却不明显。研究发现:在PJ负位相年,中东太平洋、印度洋、南海地区海温明显偏暖,菲律宾海上空有异常反气旋响应,长江中下游地区有异常气旋响应;而在PJ正位相年则反之。在PJ负(正)位相年,菲律宾海异常反气旋(气旋)和长江中下游地区异常气旋(反气旋)明显偏强(偏弱),由此导致长江中下游降水位置和强度异常存在不对称响应。基于大气环流模式ECHAM4.8的敏感性数值试验结果表明,即使印度洋海温偏暖与偏冷程度相当,但由偏暖印度洋海温激发的菲律宾海异常反气旋也明显偏强,从而造成长江中下游地区降水偏多程度大于偏少程度。由此印证的事实是:El Niňo次年(PJ负位相年)长江中下游夏季降水偏多的预测技巧高于La Niňa次年夏季降水偏少的预测技巧。 相似文献
10.
用常规天气图、雨情资料和中国气象局T213模式、T639模式、河北省MM5模式、日本气象厅JMA模式和德国气象局DWD模式的降水预报资料。将5种数值模式的降水要素预报,插值到河北省的142个站点上做TS评分。对2009年7月至2010年6月的多模式降水预报进行了分天气型的检验。结果表明,TS评分与模式和区域关系密切,降雨系统(如切变型、副高型、槽型)对应着较高的预报正确率,切变型、副高型对大雨和暴雨的预报正确率较高。对5种模式的综合评价是,对小雨和中雨的预报,DWD、T639、JMA模式好于其他模式,对大雨和暴雨的预报,T639、MM5、T213模式好于其他模式。 相似文献
11.
12.
利用美国全球监测与模型研究中心(GIMMS)1982—2006年逐月归一化植被指数(NDVI)、美国国家海洋和大气局(NOAA)1854—2008年海温资料以及中国国家气候中心(NCC)1951—2006年160站月降水资料,通过旋转经验正交函数分解(REOF)和相关分析获得了长江流域夏季降水预报序列和植被、海温预报因子集。基于最优子集回归方法(OSR),并借助交叉验证(CV)以及空间重建等手段,构建了单独以前期春季海温为预报因子和同时引入前期春季海温与归一化植被指数为因子的两类预报模型,对比分析引入陆面植被因子前后长江流域夏季降水预报效果改善状况,评估春季陆面植被对长江流域夏季降水可预报性的影响及预报效果的稳健性。结果表明:(1)相对于海温因子,春季陆面植被因子对长江流域夏季降水预报具有同样重要性,引入春季归一化植被指数后,长江流域夏季降水预报得到明显改善,相关系数平均由0.49提升到0.66,提高0.17左右,模型解释方差提升平均60%左右,其中单纯海温因子预报效果较差的汉江—淮河地区和淮河流域地区,相关系数更是提高了0.20—0.30,模型解释方差提升1倍左右;(2)交叉验证预报表明,相对于仅考虑海温因子模拟情形,交叉预报相关系数下降较多,模型稳健性较低,引入归一化植被指数后,长江流域夏季降水预报稳健性得到明显提升,长江中下游及其以南的长江三角洲地区、洞庭湖—鄱阳湖地区改善尤为明显;(3)长江流域降水可预报性存在明显的区域差异,嘉陵江流域地区、汉江—洞庭湖地区预报效果最好,汉江—淮河地区、淮河流域地区、长江三角洲地区预报效果最差,但引入归一化植被指数后预报效果提高最明显,而洞庭湖—鄱阳湖地区虽然模拟效果较好,但预报稳健性较低,交叉验证相关系数降幅达到0.27,这也从侧面说明了长江流域夏季降水分区预报的重要性。 相似文献
13.
Based on the daily observational precipitation data of 147 stations in the Yangtze River basin for 1960-2005, and the projected daily data of 79 grids from ECHAM5/MPI-OM in the 20th century, time series of precipitation extremes which contain annual maximum (AM) and Munger index (MI) were constructed. The distribution feature of precipitation extremes was analyzed based on the two index series. Research results show that (1) the intensity and probability of extreme heavy precipitation are higher in the middle Mintuo River sub-catchment, the Dongting Lake area, the mid-lower main stream section of the Yangtze River, and the southeastern Poyang Lake sub-catchment; whereas, the intensity and probability of drought events are higher in the mid-lower Jinsha River sub-catchment and the Jialing River sub-catchment; (2) compared with observational data, the averaged value of AM is higher but the deviation coefficient is lower in projected data, and the center of precipitation extremes moves northwards; (3) in spite of certain differences in the spatial distributions of observed and projected precipitation extremes, by applying General Extreme Value (GEV) and Wakeby (WAK) models with the method of L-Moment Estimator (LME) to the precipitation extremes, it is proved that WAK can simulate the probability distribution of precipitation extremes calculated from both observed and projected data quite well. The WAK could be an important function for estimating the precipitation extreme events in the Yangtze River basin under future climatic scenarios. 相似文献
14.
Based on the daily observational precipitation data of 147 stations in the Yangtze River basin for 1960-2005,and the projected daily data of 79 grids from ECHAM5/MPI-OM in the 20th century,time series of precipitation extremes which contain annual maximum(AM)and Munger index(MI)were constructed.The distribution feature of precipitation extremes was analyzed based on the two index series.Research results show that(1)the intensity and probability of extreme heavy precipitation are higher in the middle Mintuo River sub-catchment,the Dongting Lake area,the mid-lower main stream section of the Yangtze River,and the southeastern Poyang Lake sub-catchment;whereas,the intensity and probability of drought events are higher in the mid-lower Jinsha River sub-catchment and the Jialing River sub-catchment;(2)compared with observational data,the averaged value of AM is higher but the deviation coefficient is lower in projected data,and the center of precipitation extremes moves northwards;(3)in spite of certain differences in the spatial distributions of observed and projected precipitation extremes,by applying General Extreme Value(GEV)and Wakeby(WAK)models with the method of L-Moment Estimator(LME)to the precipitation extremes,it is proved that WAK can simulate the probability distribution of precipitation extremes calculated from both observed and projected data quite well.The WAK could be an important function for estimating the precipitation extreme events in the Yangtze River basin under future climatic scenarios. 相似文献
15.
文中基于1972—2021年长三角地区国家基本气象观测站的逐日降水资料,利用线性趋势分析、合成分析等方法分析了长三角地区夏季降水的时空分布特征,并讨论了夏季降水异常的可能成因。结果表明:1) 长三角地区夏季降水呈显著上升趋势,且具有明显的年际变化特征;空间分布呈南多北少的特征,降水大值区主要位于安徽南部和浙江南部沿海地区。2) 长三角地区夏季降水偏多年,东亚沿岸上空为明显的东亚太平洋(East Asia Pacific,EAP)遥相关型的负位相。夏季降水与西太平洋副热带高压面积、强度指数呈显著正相关关系,与脊线位置指数呈显著负相关关系。3) 长三角地区夏季降水与孟加拉湾、阿拉伯海、西太平洋和东北太平洋的海温呈显著正相关关系,与副热带东北太平洋海温呈显著负相关关系。 相似文献
16.
基于1980—2016年长江流域站点观测降水,评估了CWRF区域气候模式对长江流域面雨量和极端降水气候事件的模拟能力.结果表明:CWRF模式能较好地再现1980—2016年长江流域及不同分区降水空间分布及月/季面雨量年际变率,且在冬、春季表现较好,夏、秋季次之.CWRF模式对长江流域面雨量存在系统性高估,对面雨量的模拟... 相似文献
17.
基于WRF-WVT水汽追踪模式,对2022年6—8月长江流域极端干旱情况下的水循环进行模拟研究,分析了长江流域蒸散发对长江流域局地和非局地降水的影响。结果表明,2022年夏季干旱导致长江中下游陆地水储量在5—8月期间减少100~150 mm。6—8月长江流域约45%的蒸散发在当地和华北形成降水,其中6月长江流域蒸散发主要贡献当地降水,而7、8月对当地和华北降水的贡献大致相等。6—8月长江流域蒸散发贡献的当地降水逐月减少,总量为8.2×107 m3(长江流域平均91.2 mm),并且降水强度越高当地蒸散发贡献率越小,对当地降水贡献最大的区域为四川盆地附近(最大超过40%)。长江流域蒸散发为华北提供的降水在6—8月先增多后小幅度减少,总量为5.3×107 m3(华北平均58.4 mm),并且降水强度越高长江流域蒸散发贡献率越大。2022年夏季长江流域蒸散发对当地和华北地区暴雨的贡献率都为12%左右。 相似文献
18.
2000年以来夏季长江流域降水异常研究 总被引:3,自引:7,他引:3
根据1880年以来中国夏季的雨型、1890年以来长江中下游梅雨以及1951年以来北半球大气环流等资料,利用物理统计分析的方法,研究了2000年以来夏季长江流域降水异常特征及东亚大气环流背景。结果表明,20世纪50年代至70年代后期我国夏季主要多雨带位置偏北,黄河流域、华北一带降水偏多,长江流域降水偏少,长江中下游梅雨偏弱;70年代后期到90年代末我国夏季主要多雨带南移,长江流域进入多雨期,长江中下游梅雨偏强,黄河流域、华北地区则转入少雨期;但是2000年以来的夏季,在黄河流域、华北地区仍维持少雨的背景下,主要多雨带却徘徊在黄河与长江之间及华南、江南长江流域降水显著偏少,梅雨异常偏弱,空梅频繁出现,长江流域、黄河流域及华北地区同处在持续少雨位相和干旱频发阶段,这种同步振荡的异常现象历史上极为少见。夏季东亚环流型的特殊配置是2000年以来夏季长江流域持续少雨的主要原因之一,这与2000年以前长江流域夏季少雨的环流背景不一样。 相似文献
19.
用1958~2000年NCEP/NCAR再分析资料、中国160站降水量及1958~1998年月平均海温资料分析了中国夏季相邻月份降水异常型的相关特征,及其与大气热源的关系和相关物理过程。结果表明,7月长江流域的降水异常与8月长江和黄河之间地区的降水异常有很好的同号性。7、8月长江流域及附近地区持续性偏旱(涝)与太平洋洋盆尺度的大气热源异常有关,并与前期5、6月热带中、东太平洋大范围的热源异常、青藏高原热源异常也有密切的联系,即当5、 6月赤道东太平洋的大气热源正异常,而赤道中太平洋北侧的热源负异常,则中国7月长江中下游偏涝,8月长江中上游与江淮流域和内蒙古东部偏涝,华南偏旱;反之亦然。前期热带中、东太平洋上空的热源异常中心和与之联系的异常垂直运动中心的西扩和西移,以及青藏高原东部的热源异常中心是影响我国7、8月持续偏旱(涝)的重要环流异常特征。另外,南海-西太平洋海温在前期也已经具有我国夏季长江流域发生旱涝对应的同期海温异常分布型的特征。 相似文献
20.
2050年前长江流域极端降水预估 总被引:3,自引:0,他引:3
20世纪90年代长江流域日最大降水增加主要出现在长江以南地区和金沙江流域,ECHAM5/MPI-OM模型也大致模拟出了这种趋势。在IPCC给出的3种不同的排放情景下,2000-2050年长江上游日最大降水均有上升趋势,2020年前A2情景下日最大降水最大,A1B最小;长江中下游日最大降水在2025年之前均有明显上升趋势,之后略有下降,波动较大。长江流域未来日最大降水增多的区域可能主要出现在长江以南地区,而极端降水减少的区域可能出现在长江以北地区。 相似文献