首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
南海西北陆坡区内潮与近惯性内波观测研究   总被引:2,自引:2,他引:0  
梁辉  郑洁  田纪伟 《海洋学报》2016,38(11):32-42
通过对2006年南海西北部海域近3个月的全水深流速观测资料的分析,研究了该海区正压潮、内潮及近惯性内波的时空分布特征。结果表明,全日内潮明显强于半日内潮,且最大潮流均出现在海洋上层;内潮的主轴方向基本沿东南-西北方向,近似与局地等深线垂直;内潮能量显示出明显的时间长度约为半月的大小潮调制周期;全日内潮的coherent部分占全日内潮能量的70%,而半日内潮的coherent部分占半日内潮能量的53%;进一步研究发现半日内潮主要由第一模态主导,而全日内潮第三模态能量占总能量的比例仅次于第一模态且量值上与之相当;强风过程可激发出强的近惯性运动,暖涡使得近惯性内波能量更有效地向海洋深层传播,冷涡则不利于近惯性内波能量向下传播。  相似文献   

2.
本文基于布放于南海北部的ADCP海流数据和温度链数据,分析了南海北部上层海洋对强台风尼格响应特征。结果表明:台风活动会生成强烈的近惯性振荡;在热力学方面会引起南海北部海区特别是表层海水迅速降温,海温的日变化特征消失;动力学方面近惯性内波成为支配研究海区海水流动的关键因素,造成流速迅速增大;此外近惯性内波会向下传播,并且下传时经历由慢至快的过程;最后近惯性内波会引起波-波相互作用,包括近惯性内波的入射和反射波之间相互作用生成频率两倍于惯性频率的内波,以及近惯性振荡与半日内潮相互作用生成两者频率之和的波动,使近惯性能量发生转移。  相似文献   

3.
内波是层结海洋中普遍存在的一种海洋动力学现象,包含内潮、内孤立波、近惯性内波等多种形式,由于其携带能量巨大,分布范围广,发生频率高,对海洋结构物造成严重威胁。对国内外关于内波生成、传播演化、海遥感观测及其与海洋结构物相互作用方面的研究进展进行综述。总结了关于内波的生成机制、浅水和深水区域内波传播演化特征、实际海洋内波特征的遥感观测以及内波与海洋平台及水下潜器相互作用的研究成果,讨论了数值模拟、模型试验、遥感观测等研究手段在海洋内波研究中的应用以及取得的相应研究成果。最后,在探讨海洋内波研究趋势的基础上对未来关于内波生成机制及其海洋学特征观测相关研究需考虑和解决的问题进行了展望。  相似文献   

4.
近惯性内波广泛存在于全球海洋,是维持深层海洋跨等密度面湍流混合及海洋层结的重要能量来源。基于黑潮-亲潮混合区的多年深海潜标数据,分析了:(1)该海域近惯性内波及其能量的季节变化特征与影响因素,(2)上层和深层近惯性运动的频率、波数谱及垂向分布等特征。结果表明,该海域存在丰富的近惯性动能,无论海洋上层还是深层均呈现显著的冬季强、夏季弱的季节变化特征,冬季(12~2月)上层的近惯性能量可占全年能量的41%,深层近惯性信号同样显著,同潮汐信号相当。平板模型分析表明,该区域近惯性动能的季节循环特征主要受风场的季节变化所主导,同时受到黑潮延伸体流轴的摆动调制。  相似文献   

5.
2015年9月台风"灿鸿"经过黄海海域的QF111浮标,该浮标观测到黄海海洋的温度和流速响应。受台风影响,黄海海表温度有明显的下降,降温幅度在2~4°C,且在台风路径右侧形成了海表面温度低于20°C的低温斑块。流速的响应主要表现为台风过境期间流速增强,达1.2~1.5 m/s,呈现出全水深强化的特征。风一直对海洋有能量输入,且在台风过境期间风输入海洋的能量最大,旋转功率谱的分析结果表明台风输入海洋的能量向海洋内部传播。黄海海域由台风激发出的近惯性振荡衰减较快,近惯性振荡e折时间尺度约为2 d。  相似文献   

6.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

7.
南海是全球内波高发区之一,也是强混合海区。本文利用公开的温盐、流场、风场等数据,结合理论模型分别给出了近惯性内波、内潮、背风波对南海混合的能量贡献及空间分布。三者输入南海的能量之和约为19GW,其中近惯性内波贡献27%;内潮贡献66%;背风波贡献7%。假设这些能量全部在南海耗散为混合提供能量,计算得到南海的平均混合率约为2.8×10~(-3)m~2·s~(-1)。  相似文献   

8.
文章利用2014年9月南海东北部附近海域的A、B两个相距约20km的潜标数据,分析了台风"海鸥"在南海东北部激发的近惯性振荡的垂向分布特征。结果表明,台风过境在两站点激发了强烈的近惯性振荡,其能量由海表向海洋内部传播;近惯性能量在表层随着深度增加而增大,最大值出现在次表层,此后随着深度增加迅速衰减。但是两个观测站点的近惯性振荡垂向分布特征有较大的差别:A站点的近惯性振荡在不同深度上存在三个不同的垂向相速度,而B站点的垂向相速度没有变化;两站点的最大近惯性动能的大小及其所在深度不同,B站点比A站点的最大近惯性动能大15%左右。台风过后两个站点均出现由近惯性波f和半日内潮波D_2非线性相互作用产生的次级波动fD_2,但其强度存在差异。台风后A站点fD_2在不同深度上有不同的变化,f和D_2相互作用较弱;而B站点的fD_2在整个近惯性振荡影响深度内都是增强,其fD_2和f频带的动能和流速在时空分布以及变化趋势上有较好的相关性。两站点的近惯性振荡垂向相速度以及次级波动fD_2的不同可能是水体层结的差异和涡旋的影响所导致的。  相似文献   

9.
海洋内孤立波是一种特殊的内波,它能够长距离的传播而保持波形的基本不变。世界上很多海域都观测到了内孤立波的存在,我国南海也是内孤立波频发的典型海区。本文介绍了内孤立波的生成机制、南海内孤立波的研究现状并探讨了南海内波的源、最后介绍研究内孤立波所用的传播模型,认为建立水平二维的内孤立波传播模型具有重要的意义。  相似文献   

10.
文章利用2014年9月南海东北部附近海域的A、B两个相距约20km的潜标数据, 分析了台风“海鸥”在南海东北部激发的近惯性振荡的垂向分布特征。结果表明, 台风过境在两站点激发了强烈的近惯性振荡, 其能量由海表向海洋内部传播; 近惯性能量在表层随着深度增加而增大, 最大值出现在次表层, 此后随着深度增加迅速衰减。但是两个观测站点的近惯性振荡垂向分布特征有较大的差别: A站点的近惯性振荡在不同深度上存在三个不同的垂向相速度, 而B站点的垂向相速度没有变化; 两站点的最大近惯性动能的大小及其所在深度不同, B站点比A站点的最大近惯性动能大15%左右。台风过后两个站点均出现由近惯性波f和半日内潮波D2非线性相互作用产生的次级波动fD2, 但其强度存在差异。台风后A站点fD2在不同深度上有不同的变化, fD2相互作用较弱; 而B站点的fD2在整个近惯性振荡影响深度内都是增强, 其fD2f频带的动能和流速在时空分布以及变化趋势上有较好的相关性。两站点的近惯性振荡垂向相速度以及次级波动fD2的不同可能是水体层结的差异和涡旋的影响所导致的。  相似文献   

11.
杨兵  侯一筠 《海洋与湖沼》2020,51(5):978-990
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=1012W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺...  相似文献   

12.
南海混合层近惯性能通量的时空变化   总被引:1,自引:1,他引:0  
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation(SODA), the wind-induced near-inertial energy flux(NIEF) in the mixed layer of the South China Sea(SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to September. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 m W/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Ni?o3.4 index are negatively correlated.  相似文献   

13.
南海北部陆架区两个台风过境时近惯性运动的若干特征   总被引:2,自引:1,他引:1  
Features of near-inertial motions on the shelf(60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inertial and super-inertial frequencies. The super-inertial energy maximizes near the surface, while the sub-inertial energy maximizes at a deeper layer of 15 m. The sub-inertial shift of frequency is induced by the negative background vorticity. The super-inertial shift is probably attributed to the near-inertial wave propagating from higher latitudes. The near-inertial currents exhibit a two-layer pattern being separated at mid-depth(25–30 m), with the phase in the upper layer being nearly opposite to that in the lower layer. The vertical propagation of phase implies that the near-inertial energy is not dominantly downward. The upward flux of the near-inertial energy is more evident at the surface layer(17 m). There exist two boundaries at 17 and 40 m, where the near-inertial energy is reflected upward and downward. The near-inertial motion is intermittent and can reach a peak of as much as 30 cm/s. The passage of Typhoon Nangka generates an intensive near-inertial event, but Typhoon Linfa does not. This difference is attributed to the relative mooring locations, which is on the right hand side of Nangka's path(leading to a wind pattern rotating clockwise with time) and is on the left hand side of Linfa's path(leading to a wind pattern rotating anti-clockwise with time).  相似文献   

14.
Inertial oscillations as deep ocean response to hurricanes   总被引:1,自引:0,他引:1  
We discuss the deep ocean response to passing hurricanes (aka typhoons), which are considered as generators of near-inertial, internal waves. The analysis of data collected in the northwestern parts of the Pacific and Atlantic oceans in the hurricane season permit us to assess the deep ocean response to such a strong atmospheric forcing. A large number of moorings (more than 100) in the northwestern Pacific have allowed us to characterize the spatial features of the oceanic response to typhoons and the variable downward velocity of near-inertial wave propagation. The velocity of their downward propagation varies in the range 1–10 m/hour. It is higher in the regions of low stratification and high anticyclonic vorticity. The inertial oscillations generated by a hurricane last for 10–12 days. The mean anticyclonic vorticity in the region increases the effective frequency of inertial oscillations by 0.001–0.004 cyc/hour.  相似文献   

15.
A nested-grid ocean circulation modelling system is used to assess the upper ocean response of the Scotian Shelf and adjacent slope to Hurricane Juan in September 2003. The nested-grid system consists of a fine-grid inner model covering the Scotian Shelf/slope and a coarse-grid outer model covering the northwest Atlantic Ocean. The model-calculated upper ocean response to Hurricane Juan is characterized by large divergent surface currents forced by the local wind forcing under the storm, and intense near-inertial currents in the wake of the storm. The sea surface temperature (SST) cooling produced by the model is biased to the right of the storm track and agrees well with a satellite-derived analysis. Over the deep water, off the Scotian Shelf, some of the near-inertial energy input by the storm is advected eastward by the Gulf Stream away from the storm track. The hurricane also generates shelf waves that propagate equatorward with the coastline on their right. In comparison with the outer model results, the inner model captures more meso-scale structures, greater SST cooling and stronger near-inertial currents in the study region.  相似文献   

16.
海洋中的跨等密度面湍流混合对于热量和淡水输送、翻转环流以及全球气候变化都有重要影响,理解跨等密度面湍流混合的变化对于改进气候模式模拟和预测大尺度海洋环流的能力具有重要作用.基于细尺度参数化方法,本文利用黑潮延伸体区的一个长期潜标K7观测,对跨等密度面湍流混合的次季节变化进行了分析.结果 表明,在2004年6~9月,30...  相似文献   

17.
Based on in-situ observation,satellite and reanalysis data,responses of the western North Pacific subtropical ocean(WNPSO)to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed.The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39m/s and 0.15m/s,respectively.The near-inertial currents concentrated around 100m below the sea surface and had an e-folding timescale of 4 days.The near-inertial energy propagated both upward and downward,and the vertical phase speed and wavelength were estimated to be 5m/h and 175m,respectively.The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity.The resultant surface cooling reaches-4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0m/s.When Nanmadol reaches super typhoon intensity,the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling.Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight.The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment.Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease,however,mixed layer salinity decrease occurs at certain stations as well.Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses,and the small Mach number(slow typhoon translation speed)facilitate development of Ekman current and upwelling.  相似文献   

18.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   

19.
西沙生态监控区造礁石珊瑚退化原因分析   总被引:16,自引:5,他引:16  
2005-2009年对西沙生态监控区5个站位(永兴岛、石岛、西沙洲、赵述岛和北岛)造礁石珊瑚种类、覆盖度、补充量及其主要环境因子进行了调查.研究结果表明,西沙生态监控区造礁石珊瑚呈现逐年退化趋势,活造礁石珊瑚覆盖率从2005年的65%下降到2009年的7.93%,而死珊瑚覆盖率变化则相反,从2005年的4.70%增加到...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号