首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late Mesoproterozoic to Neoproterozoic Kalahari Copperbelt (KCB) in Namibia and Botswana is widely covered by Kalahari sand, which precludes direct correlations between known stratabound sediment-hosted Cu–Ag districts. We use a combination of review of literature data, and newly processed and interpreted high-resolution aeromagnetic maps in both countries to provide a new correlative cross-border interpretation. Lithostratigraphic control on the aeromagnetic response allows detailed indirect mapping of the Kalahari Copperbelt lithotectonic domains below the sand cover. This enabled us to redefine the width and lateral extent of the KCB as two continuous magnetic domains (the Rehoboth and Ghanzi–Chobe domains) extending from central Namibia to northern Botswana, and helped in resolving problems of stratigraphic correlations across the international border.The Rehoboth magnetic domain, in the western part of the KCB in Namibia, records continental arc magmatism at ~ 1200 Ma during orogenic events along the northwestern edge of the Kalahari Craton. This was followed at 1110–1090 Ma by widespread magmatism, identified within the entire KCB, and related to the 1112–1106 Ma Umkondo Large Igneous Province. The basal parts of the Tsumis Group in Namibia and Ghanzi Group in Botswana were deposited in shallow-water environments after a period of erosion and peneplanation. Subsequently, and prior to the Sturtian glaciation, the host-rocks of the Cu–Ag deposits formed by the deposition of chemically reduced shales and siltstones that formed in deeper water and overlie chemically oxidised shallow-water sandstones. This regional interface, which is both a permeability barrier and redox boundary, played a critical role in the formation of the stratabound sediment-hosted Cu–Ag deposits of the Kalahari Copperbelt, and the interface, with its strong magnetic contrast, can be followed through the entire Ghanzi–Chobe magnetic domain of the copperbelt. The whole KCB was affected by the Damara Orogeny during early Cambrian times, which resulted in the formation of a NE–SW trending ~ 250 km-wide fold-and-thrust belt.  相似文献   

2.
安徽合肥盆地东北部白垩纪层序地层学分析   总被引:3,自引:0,他引:3  
吴跃东  邵莉 《地层学杂志》2002,26(2):111-118
运用层序地层学理论和工作方法 ,对合肥盆地东北部白垩纪陆相地层各类沉积建造的沉积环境、沉积相和陆相沉积体系域进行了分析 ,根据红层盆地的沉积物充填序列、基本层序 ,将白垩纪断 (坳 )陷盆地充填沉积序列中划分为 4个层序 ,在层序地层学分析基础上 ,并根据岩石地层单元和沉积体系在时空上的展布特征 ,初步建立了红盆地层格架。  相似文献   

3.
The Maastrichtian Patti Formation, which consists of shale - claystone and sandstone members, constitutes one of the three Upper Cretaceous lithostratigraphic units of the intracratonic southeastern Bida Basin, in central Nigeria. Well exposed outcrops of this formation were investigated at various locations around the confluence of the Niger and Benue Rivers. The lithostratigraphic sections were measured and their peculiar sedimentological features such as textures, physical and biogenic sedimentary structures, facies variations and associations were documented and used to interpret the depositional environments and develop a paleogeographic model. Some selected representative samples of the sedimentary depositional facies were also subjected to grain size analysis.Three shoreline sedimentary depositional facies composed of shoreface, tidal channel, and tidal marsh to coastal swamp facies were recognized in the study area. Continental sedimentary depositional facies such as fluvial channel, swamp, and overbank were also documented. The sandstones of the shoreface and tidal channel facies are medium- to coarse-grained, moderately sorted (standard deviation ranges from 0.45–1.28 averaging 0.72), and quartzarenitic. The fluvial channel sandstone facies are coarse- to very coarse-grained, mostly poorly sorted (standard deviation ranges from 0.6–1.56 averaging 1.17), and subarkosic. Typical sedimentary structures displayed by the shoreface and tidal channel facies include burrows, clay drapes, hummocky and herringbone cross stratifications, whereas the fluvial channel sandstone facies are dominated by massive and planar cross beddings. The tidal marsh to coastal swamp shales and ferruginised siltstone facies are fossiliferous and bioturbated, whereas the nonmarine swamp siltstones contain vegetal imprints and lignite interbeds. The overbank claystone facies are massive and kaolinitic.In the study area, a regressive to transgressive model is proposed for the Patti Formation. This model correlates with stratigraphically equivalent sediments of the Ajali and Mamu Formations in the adjacent Anambra Basin to a great extent.  相似文献   

4.
The Late Cretaceous Gürsökü Formation represents the proximal fill of the Sinop–Samsun Forearc Basin that was probably initiated by extension during the Early Cretaceous. The succession records sedimentation in two contrasting depositional systems: a slope-apron flanking a faulted basin margin and coarse-grained submarine fans. The slope-apron deposits consist of thinly bedded turbiditic sandstones and mudstones, interbedded with non-channelized chaotic boulder beds and intraformational slump sheets representing a spectrum of processes ranging from debris flow to submarine slides. The submarine fan sediments are represented by conglomerates and sandstones interpreted as deposited from high density turbidity currents and non-cohesive debris flows. The occurrence of both slope apron and submarine fan depositional systems in the Gürsökü Formation may indicates that the region was a tectonically active basin margin during the Late Cretaceous.  相似文献   

5.
Geochemical studies of sandstones from the three lithostratigraphic successions in the southern Benue Trough of Nigeria were undertaken for a geochemical characterization of the sandstones, and to assess their strati-graphic and source evolution.Major and trace elements data were obtained from outcrop sandstone samples. The SIO2/Al2O2, Fe2O3/K2O ra-tios and CaO contents have been used to characterize the Cretaceous sandstones into Al-rich and high and low Fe2O3/K2O ratio sandstones. Results indicate that there are geochemical features that display stratigraphic trends across the succession from the Asu River Group, Eze-Aku Group to the proto-Niger Delta succession which may imply a discontinuous evolution from different source terrains of Precambrian and Mesozoic ages that supplied the sediments. The Asu River Group sandstones have lower SiO2, Al2O3, Fe2O3 and higher MgO; the Eze-Aku sand-stones have higher TiO2, CaO, alkalis and lower MgO while the proto-Niger Delta sandstones have higher SiO2, Al2O3, Fe2O3 and lower alkalis and CaO. These discontinuities signify the influence of tectonic impulses that af-fected the southern Benue Trough during the Cretaceous time. Changes in ratios of TiO2/Al2O3, Fe2O3, Cr and Zr suggest an increasingly mafic contribution to the depositional basin with time. The chemical index of alteration in-creases with time, possibly suggesting that a more intense weathering regime in the hinterland developed with time.  相似文献   

6.
The coal deposits of southern Africa (Botswana, Malawi, Mozambique, Namibia, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe) are reviewed. The coal seams formed during two periods, the Early Permian (Artinskian–Kungurian) and the Late Permian (Ufimian–Kazanian). The coals are associated with non-marine terrestrial clastic sedimentary sequences, most commonly mudrock and sandstones, assigned to the Karoo Supergroup. The Early Permian coals are most commonly sandstone-hosted while the younger coals typically occur interbedded with mudstones. The sediments were deposited in varying tectono-sedimentary basins such as foreland, intracratonic rifts and intercratonic grabens and half-grabens. The depositional environments that produced the coal-bearing successions were primarily deltaic and fluvial, with some minor shoreline and lacustrine settings. Coals vary in rank from high-volatile bituminous to anthracite and characteristically have a relatively high inertinite component, and medium- to high-ash content. In countries where coal is mined, it is used for power generation, coking coal, synfuel generation, gasification and for (local) domestic household consumption.  相似文献   

7.
Dominantly coarse-grained, shallow-marine, metasedimentary rocks of the Early Proterozoic Uncompahgre Group (UG) record periods of shoaling and drowning on different temporal scales that are attributed to episodic long-term oscillations in relative sea-level with superimposed shorter duration excursions in relative sea-level. Long-term events are probably tectonic whereas short-term events are eustatic. The 2–5 km thick Uncompahgre Group consists of 250–600 m thick, dominantly coarse-grained quartzite units (Q1–Q4) and 200–300 m thick mudstone/pelite units (P1–P5). Five depositional systems comprise the Uncompahgre Group. The outer shelf system (OSS) is composed of Bouma-type beds and intercalated mudstones that are transitional vertically to parallel-laminated to wave-rippled sandstones and hummocky cross-stratified sandstones of the inner shelf system (ISS). Trough cross-stratified sandstones comprise the shoreface system (SHS). The tidal inner shelf/shoreface system (TIS/SHS) consists of a complex interlayering of cross-bedded sandstones, thin-bedded conglomerates, mudstones and rippled sandstones. Trough cross-bedded pebbly sandstones and thin- to thick-bedded conglomerates represent the alluvial system (ALLS). Depositional systems in the UG are associated in transgressive and highstand-systems tracts that make up four sequences (1 to 4). Sequence boundaries do not correspond with lithostratigraphic boundaries but are defined by subtle unconformities. The basal Q1–P1 unit (lower sequence 1) consists of ALLS to TIS/ SHS to ISS comprising a transgressive systems tract. A maximum marine incursion is reflected by deposition of OSS facies in stratigraphic units P1–P2. Shoaling in the transition from P2 to the uppermedial portion of Q2 (OSS—ISS—SHS to a thick TIS/SHS—ALLS) records the highstand systems tract of upper sequence 1. A subtle disconformity/paraconformity delineates a type 2 sequence boundary at the top of the highstand systems tract. The drowning to shoaling pattern is replicated in sequence 2 (upper Q2 to P3 to upper medial Q3); sequence 3 (upper Q3 to P4 to upper-medial Q4); and an incomplete sequence 4 (upper Q4 through P5). Thinner shoaling intervals of OSS—ISS—SHS in P3 and in lower Q2, Q3 and Q4 represent parasequences. Sequences of 107 years duration are attributed to periods of increasing and decreasing subsidence rates due to tectonism marginal to the sedimentary basin. Parasequences record shorter duration temporal controls of c. 104 to 105 years related to eustatic oscillations. As a consequence of shoaling and aggradation/ progradation in the highstand systems tract, TIS/SHS and ALLS overlie and are temporally separated from OSS to ISS to SHS. This transition records filling of the basin to sea-level leading to a shelf geometry that was conducive to tidal amplification. A composite relative sea-level curve integrating long-term pulsatory subsidence and short-term eustasy best explains the stratigraphic evolution of the Uncompahgre Group.  相似文献   

8.
中国东北区中生代生物群特征简述   总被引:1,自引:0,他引:1  
概要的总结了东北区中生代地层中古生物群,以及它们在岩石地层单位中的分布,借以说明岩石地层的时代,为地层多重划分对比提供了依据。  相似文献   

9.
通过对黑龙江省嘉荫县乌拉嘎盆地内各地层单元的岩石组合、生物化石组合与时代和沉积环境的系统研究与厘定,并与孙吴-嘉荫盆地其他断陷以及松辽盆地进行对比.研究表明:乌拉嘎盆地中、新生代划分为3个构造层5个岩石地层单元,并对其空间展布与演化进行了恢复,填制区域地质图.乌拉嘎盆地表现为明显的3期不同性质的盆地叠合演化特点,其间由...  相似文献   

10.
Nodules consisting of fluorapatite are concentrated as a discrete band in the polymetallic sulfide ore of the Gamsberg deposit in central Bushmanland, South Africa. Their shape, zonal features, and geochemistry, in particular rare earth element (REE) abundances, are similar to authigenic francolite concretions that precipitate during diagenesis in organic-rich muds. As a result, the apatite nodules are regarded as primary. The nodules have a strong lithostratigraphic control, occurring at the transition of siliciclastic-hosted pyrite–sphalerite–graphite mineralization to calc-silicate-hosted pyrrhotite–sphalerite mineralization. Mineralogical and chemical evidence indicates that this transition also corresponds to a paleo-redox boundary that separates sediments deposited under oxygen-deficient conditions from those that developed in a more oxygenated environment. The apatite nodules can morphologically and chemically clearly be distinguished from coarse apatite grains that occur in oxide-facies iron formations stratigraphically above the ore horizon. However, similar REE profiles and in particular positive Eu anomalies in both types of apatite are indicative of a close genetic relationship between the two units and favor a common hydrothermal origin of the P. The contrasting morphologies and chemical signatures of the two occurrences can rather be attributed to differences in behavior of the phosphates during precipitation within the contrasting host sediments (chemical versus fine-grained clastic). Taking modern phosphorites as an analogue, these results are used to postulate a genetic model for the deposition of the sulfide ore and associated iron formations. The model envisages differentiation of the depositional basin into oxygen-deficient basin facies hosting the sulfide ore and oxygenated shelf facies, which are composed of manganiferous iron formations. The intimate association of sedimentary apatite with base metal sulfides indicates that basin conditions were conducive to the precipitation of both phases. This relationship might act as a potential exploration guide in similar basins elsewhere.Editorial handling: E. Frimmel  相似文献   

11.
1 Introduction The North China Craton (NCC) is considered to be the oldest and largest cratonic block in China. Recent studies to gain understanding of basement architecture of the NCC has led to its division into the Western and Eastern Blocks, separated by a N-S trending Paleoproterozoic Trans-North China Orogen (TNCO) (Fig. 1; Zhao et al., 1998, 1999a, 2000a, 2001a; Wilde et al., 2002). Although there is now abroad consensus that the final assembly of the NCC was completed by th…  相似文献   

12.
Rocks of the Neoproterozoic Mwashya Subgroup (former Upper Mwashya) form the uppermost sedimentary unit of the Roan Group. Based on new field and drill hole observations, the Mwashya is subdivided into three formations: (1) Kamoya, characterized by dolomitic silty shales/siltstones/sandstones and containing a regional marker (the “Conglomerate de Mwashya” bed or complex); (2) Kafubu, formed by finely bedded black carbonaceous shales; and (3) Kanzadi, marked by feldspathic sandstones. Rocks of the Mwashya Subgroup are overlain by the Sturtian age Grand Conglomérat diamictite (equivalent to the Varianto/Brazil and Chuos/Namibia diamictites), and conformably overlie rocks of the Kansuki Formation (former Lower Mwashya), a carbonate unit containing volcaniclastic beds. New geochemical data confirm the continental rift context of this magmatism, which is contemporaneous with rift-related volcanism of the Askevold Formation (Nosib Group, Namibia). A gradational lithological transition between rocks of the Kansuki and the underlying Kanwangungu Formations, and similar petrological composition of these two formations, support the hypothesis that the Kansuki is the uppermost unit of the carbonate-dominated Dipeta/Kanwangungu sequence, and does not form part of the Mwashya Subgroup. Base metal deposits, mostly hosted in rocks of the Kansuki Formation, include weakly disseminated early-stage low-grade Cu–Co mineralisation, which was reworked and enriched, or initially deposited, by metamorphic fluids associated with the Lufilian orogenic event.  相似文献   

13.
赣东北白垩纪事件沉积作用   总被引:2,自引:0,他引:2       下载免费PDF全文
赣东北白垩纪地层单位涵义一直较为混乱,本文从事件沉积入手,确定了4种不同类型的界面。笔者根据其事件沉积界面,划分出3个组一级和两个段一级的岩石地层单位,较好地控制了陆相地层的纵向和横向的突变,而且对深入盆地研究,解决年代地层都具重要作用。  相似文献   

14.
雅鲁藏布大峡谷地区蛇绿混杂岩带初步研究   总被引:15,自引:0,他引:15       下载免费PDF全文
雅鲁藏布大峡谷地区主要有南迦巴瓦群(Pt1nj)、大拐弯群(Mz)和冈底斯群(Pt1gd)三个岩石地层单元。其中大拐弯群主检分布在楔入体的东缘,主要由变玄武岩/辉绿岩、辉石岩、镁质橄榄岩、石英岩和大理岩等组成,岩石类型和化学成分特征经绿岩套类似。但其岩石化学性质与典型的大洋中脊蛇绿岩判差别较大,形成环境为具有陆壳性质的中等-慢速扩张的小型洋盆,属陆间海/弧后盆地。自45Ma以来,该地区经历了强烈的  相似文献   

15.
The existing stratigraphic nomenclature applied to the Early and Middle Triassic Sherwood Sandstone Group in NW England has resulted from more than 150 years of geological investigation, but is characterized by a lithostratigraphic system that is insufficiently flexible to allow for variations in lithology and sedimentary facies within a continental depositional system. A revised well correlation based on the detrital mineralogical and chemical composition of the Ormskirk Sandstone Formation in four offshore wells, that is then extended to provide near‐basin‐wide well correlations using a regional shale marker, confirms previously suggested but unproven diachroneity at the top of the Sherwood Sandstone Group. It also reveals the presence of incised valleys filled by stacked amalgamated fluvial channel sandstones and cut into previously deposited aeolian and sandflat sequences as well as older fluvial channel sandstones. The combination of well correlations indicates that the valleys were incised by a fluvial system flowing NW from the Cheshire Basin into the East Irish Sea Basin and then west towards the Peel and Kish Bank basins. The stratal geometry of the upper part of the Sherwood Sandstone Group is suggested to conform to models of climatically mediated alternations of fluvial degradation and aggradation in response to changes in the relationship between sediment flux and stream discharge. This model is supported in the Sherwood Sandstone Group by climatically driven variations in the non‐channelized facies which record upward wetting and drying cycles that can be locally tied to fluvial incision surfaces, and suggest a hierarchy of at least three levels of climatic cyclicity recorded within the sedimentary succession. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
从层序地层学角度论岩石地层单位界线的厘定与优化   总被引:7,自引:0,他引:7  
苏文博 《现代地质》1999,13(1):19-24
以碳酸盐台地内部、边缘及盆地3个不同相区的岩石地层基本单位———组为实例,从层序地层学角度论述了岩石地层单位界线的厘定与优化方案,认为以层序(尤其是Ⅰ型层序)界面及体系域之间界面(即初始海泛面、最大海泛面等)作为一些组的新界线,将会更有利于野外岩石地层单位的识别与对比。  相似文献   

17.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   

18.
鄂尔多斯盆地东北部发现的多个砂岩型铀矿床均赋存于侏罗系直罗组下段砂岩中。前人对已知铀矿床分布区直罗组的沉积学研究程度相对较高,但对盆地北部直罗组大区域沉积体系展布与演变、物源供给特征等的研究仍较为薄弱。文中在大量钻井资料分析、野外剖面实测等基础上,将盆地北部砂岩型铀矿含矿层段直罗组下段细分为2个亚段。在直罗组中识别出河流和三角洲相沉积,认为直罗组下段下亚段主要发育砾质、砂质辫状河沉积,东北部地区发育辫状河三角洲沉积;直罗组下段上亚段主要发育砂质辫状河和曲流河沉积;直罗组上段则以曲流河沉积为主。结合前人研究工作,认为源岩物质组成、有利沉积相带和气候条件对鄂尔多斯盆地北部砂岩型铀矿的成矿均具有重要控制作用。对盆地北部直罗组沉积特征及其演化的整体认识,可为该区砂岩型铀矿床的进一步勘查提供重要的沉积学依据。  相似文献   

19.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

20.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号