首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of rare earth elements (REE) within the compositionallyzoned Dartmoor pluton is used to constrain models of graniteevolution and to assess the effects of pervasive hydrothermalalteration on REE mobility. The main process of magma evolutionwas crystal fractionation of early plagioclase, biotite, andaccessory minerals (apatite, monazite, zircon, and xenotime).Concentrations of REE (particularly LREE and Eu) and other elements(Fe2O3t, MgO, CaO, TiO2, Zr, Ba, and Sr) decrease strongly withevolution of the pluton from 71 to 74% SiO2. These trends, andthe inward zoning of the pluton, are compatible with differentiationby crystal fractionation at the level of emplacement, a processthat gave rise to a marginal cumulate granite (CGM) modifiedby country rock assimilation, a body of inner granite (PM),and a late-stage evolved granite (FG) that intruded the earliertypes. REE modelling of the Dartmoor granite types by fractionalcrystallization of REE-enriched accessory minerals from a parentPM-granite shows that the FG-granite cannot have formed froma residual liquid left by crystallization of the CGM-granite.Two discrete stages of crystallization occurred; side-wall cumulateCGM-granite crystallization dominated by LREE-en-riched monazitefractionation followed by a late-stage mobile residual FG-granitein which fractionation was dominated by HREE-enriched apatiteand zircon. Modelling supports the idea that large-scale assimilationof country rock was not the dominant process during Dartmoorgranite evolution. Pervasive hydrothermal alteration locally affected all Dartmoorgranite types, altering primary plagioclase, biotite, apatite,monazite, and, to a lesser extent, zircon and xenotime. Duringpervasive sericitization, chloritization, and tourmalinization,REE were mobilized over distances of centimetres only and redistributedinto the secondary alteration products seridte, chlorite, tourmaline,allanite, and sphene. Whole-rock REE abundances were not affected  相似文献   

2.
Baerzhe Be–Nb–Zr–REE deposit is hosted in alkaline granite (125 Ma) which intrudes in the late Jurassic Baiyingaolao Formation in the middle of the Great Hinggan Metallogenic Belt in China. The ore‐forming granite consists of three lithological facies: arfvedsonite‐bearing alkaline granite at the bottom, aegirine‐bearing albite aplite in the middle and pegmatite crust on the top. The albite aplite is the main orebody. We recognized three magmatic‐hydrothermal stages: orthomagmatic stage, late‐magmatic stage and hydrothermal stage, with the late‐magmatic stage being divided into two substages, the pegmatite substage and the aplite substage. Petrographic study on the granite, the microthermometric study on fluid inclusions and in situ laser‐ablation inductively coupled plasma mass spectrometry analysis for quartz‐hosted melt inclusions reveal the process of magmatic‐hydrothermal evolution. The finding indicates that primary magma evolved to more peralkaline by fractional crystallization, with synchronously increasing high field strength elements. An extremely high content of Zr and Nb are in the melt inclusions from last stage albite aplite (Zr, min 52 548 ppm, and Nb, min 4104 ppm). This implies that the residual magma directly formed the orebody of rare metal elements. Meanwhile, volatility was increasing during the magma evolution process and F‐bearing aqueous fluid was oversaturated at temperatures higher than 800°C. The separation of fluid from magma caused Li‐REE enrichment in F‐bearing fluid and depletion in residual melt, and led to the difference of the Y/Ho ratio between whole rock compositions and melt inclusion data. Fluid separated into a high‐salinity liquid and a low density vapor phase above 697°C, and enriched REE in the high‐salinity liquid. The oxygen isotope data shows mixing between primary magmatic‐hydrothermal fluid and meteoric water. The ubiquitous pseudo‐secondary fluid inclusions have a wide range of salinity below 462°C, which is similar to the melting temperatures of REE‐bearing daughter minerals. A model involving the mixing by meteoric water could be a mechanism for precipitation of REE minerals.  相似文献   

3.
老鸦泉富碱花岗岩杂岩体与侵入其中的富碱花岗斑岩岩体及云英岩型锡矿体、石英脉型锡矿体等REE配分曲线类似,均具有强烈的Eu亏损,它们的微量元素蛛网图等岩石地球化学特征也类似,是同源岩浆结晶分异演化的结果。锡矿体是老鸦泉富碱岩浆分异演化及以钠质为主的强烈碱交代自变质作用的最终产物。侵入于老鸦泉岩体内的花岗斑岩为锡矿体的直接围岩,它是岩浆结晶分异更晚期混入了更多地壳组分,并向酸性方向演化的产物,该花岗斑岩经自变质热液蚀变作用造成锡的富集并成矿。因此,碱性岩浆结晶分异晚期混有地壳组分,岩浆向酸性演化可能是碱性花岗岩形成锡矿的重要条件之一。  相似文献   

4.
Petrology and P–T estimates indicate that a magmatic epidote‐bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ~1.4 GPa and cooled nearly isobarically at ~0.9 GPa. The P–T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ~30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ~55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P–T path followed by magmas.  相似文献   

5.
冀东晚古生代东湾子岩体的岩石成因研究   总被引:2,自引:3,他引:2  
马旭  陈斌  牛晓露 《岩石学报》2009,25(8):1975-1988
冀东晚古生代东湾子岩体由角闪石岩、少量辉石岩和辉长岩组成.典型的堆晶结构、全岩和镁铁质矿物(透辉石、角闪石)的上凸型稀土分布模式、相容元素含量低且变化范围大(如:角闪石岩中V=296×10-6~673×10-6)的特征表明了岩体的堆晶成因.计算得到的与辉石岩中的透辉石相平衡的熔体具有很高的稀土含量,轻重稀土分馏较为明显,富集大离子亲石元素(如:Sr,Ba,K),亏损高场强元素(如:Nh,Zr,Ti),具有典型的弧岩浆特征.透辉石和角闪石的矿物成分也具有弧岩浆的特征.高钙透辉石、大量的角闪石与黑云母的存在说明母岩浆富水.透辉石在高PH2O的状态下与熔体反应,生成角闪石的结构特征也证明了这一点.结合岩体的球化学特征,认为岩浆来源于富集的含有角闪石的尖晶石橄榄岩的部分熔融,母岩浆具有富水的特征(>3%).考虑到岩体形成时代(~300Ma;Zhao et al.,2007)和地质背景,认为东湾子岩体与位于华北北缘的其它晚石炭-早二叠世的岩体形成于同一构造背景下,都是晚古生代时期古亚洲洋向华北板块之下俯冲的产物.  相似文献   

6.
华南是我国重要的战略性矿产资源基地,以花岗岩相关的稀有和稀土金属成矿作用而举世瞩目。其中,铌的成矿作用一般与过铝质高分异花岗岩有关,稀土元素则随岩浆演化程度增强而富集程度降低,而江西铁木里含黑云母碱长花岗岩体同时富集铌和稀土元素,矿化组合极具特色。本文在详细的矿物岩相学研究基础上,利用电子探针、飞秒激光电感耦合等离子质谱对铌和稀土矿物进行了矿物地球化学分析,借此对铁木里碱长花岗岩中铌和稀土元素的富集机制进行探讨。铁木里岩体由肉红色含黑云母碱长花岗岩(r-G)和灰白色含黑云母碱长花岗岩(g-G)组成,发育暗色包体。r-G中的铌矿物主要为岩浆期形成的铌铁金红石,稀土矿物包括岩浆期形成的硅钛铈矿、独居石、磷灰石和热液期形成的独居石和氟碳(钙)铈矿。g-G中的铌矿物包括岩浆期形成的铌铁金红石和热液期形成的铌铁金红石、易解石、铌铁矿,稀土矿物包括岩浆期磷灰石和热液期磷灰石、独居石、氟碳(钙)铈矿。暗色包体为岩浆混合成因,内含磷灰石、独居石和零星的硅钛铈矿、金红石。矿物组合特征显示,铁木里碱长花岗岩中的铌和稀土元素经过了岩浆和热液两个时期的富集。应用金红石、磷灰石、绿泥石等矿物成分特征约束了岩浆-...  相似文献   

7.
香花岭花岗岩稀土元素演化   总被引:8,自引:2,他引:8  
香花岭地区花岗岩中的稀土元素呈逆向演化 ,其演化过程受花岗岩体系中的岩浆主成分、熔体结构相及流体组分变化等影响。花岗岩造岩矿物中稀土元素与各自岩石变化的一致性 ,可能暗示稀土元素的演化受岩浆的制约 ;稀土元素总量随岩浆演化而下降 ,与岩浆体系降温矿物的晶出、熔体相的相对减少、流体相的增加及射气分异作用的发生等有关 ,而轻稀土富集则是由于岩浆体系向碱性增强方向演化的结果。对于连续演化的花岗岩而言 ,稀土元素的分布样式或许可作为岩浆演化酸碱环境的指向 ;负铕异常的减小除与岩浆主成分的变化有关外 ,还与氧化 还原环境的变化有关  相似文献   

8.
铜官山岩体矿物学-矿物化学特征:岩浆结晶动力学意义   总被引:1,自引:0,他引:1  
本文对皖南官山岩体开展详细地显微镜观察鉴定,利用电子探针和LA-ICP-MS技术对岩浆岩典型矿物斜长石、角闪石和榍石进行了主量和微量元素测定。显微镜鉴定表明,铜官山岩体中存在着大量的岩浆不平衡结构:如斜长石和角闪石嵌晶结构以及针状磷灰石等。这些现象的存在表明铜官山岩体在形成过程中曾发生过一次或多次岩浆混合作用。电子探针分析结果显示,斜长石的成分环带是震荡环带,而大尺度的震荡环带可能代表了大规模的岩浆混合作用;角闪石成分TiO2-Al2O3图解、CaO/NaO2-Al2O3/TiO2图解和Mg-(Fe2++Fe3+)- LiNaKCa角闪石成因矿物族三角图解指示铜官山岩体中角闪石很可能为壳-幔混合成因。LA-ICP-MS技术对主要造岩矿物的微量和稀土元素分析表明,角闪石很可能为幔源或壳幔混合源,斜长石可能为不同分异程度岩浆的混合形成。本研究比较明确地反映了铜官山岩体的形成过程中岩浆来源和结晶动力学过程,即壳幔源区的混合交代作用,与前人通过元素-同位素手段获得的信息比较吻合。  相似文献   

9.
REE Characteristics of the Kalatongke Cu-Ni Deposit, Xinjiang, China   总被引:6,自引:0,他引:6  
On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-ultramafic magma. Characterized by low REE content of sulfide, such a Cu-Ni sulfide deposit occurring in the orogen is obviously different from that on the margin of the craton. Because the mafic-ultramafic rocks from the Cu-Ni sulfide deposit occurring in the orogen is water-rich and the REEs of some sulfides show a particular "multiple-bending" pattern, which suggests coexistence of multiple liquid phases (fluid and melt), the sulfide melt possibly contains a great deal of hydrothermal fluids and increasingly developed gases and liquid-rich ore-forming fluids after the main metallogenic epoch (magmatic segregation stage).  相似文献   

10.
岩浆包裹体化学成分研究   总被引:8,自引:1,他引:8  
岩浆包裹体化学成分研究难度较大,为了获得可信的数据,应当注意:1.非演化型岩浆包裹体的化学成分可以代表其初始成分。演化型岩浆包裹体应先均一、淬火后再行测定。2.均一演化型岩浆包裹体应严格遵守加热规则,否则过热作用会使包裹体壁部分熔化,造成淬火后所测包裹体成分与其真正的初始成分并不相当。3.实测资料证明,“边界层效应”对于岩浆包裹体化学成分影响微不足道。4.岩浆包裹体的化学成分只能代表其主矿物结晶时周围岩浆的成分,即仅相当于岩浆液相线上的一个点。5。把显微冷热台测温、激光喇曼探针和电子探针分析技术结合使用,对查明单个包裹体中挥发组分的性状和浓度具有很大的潜力和前途。  相似文献   

11.
卢焕章  毕献武  王蝶  单强 《矿床地质》2016,35(5):933-952
斑岩铜矿是主要的铜资源,是矿床研究和勘查的重要目标。斑岩铜矿按其与板块构造的关系可分为2种:俯冲带斑岩铜矿和碰撞造山带斑岩铜矿,它们在成矿流体方面有很多区别,其中较大的差别是碰撞造山带斑岩铜矿的钾化蚀变带比俯冲带斑岩铜矿的钾化蚀变带强得多,且范围也相对较宽。文章简述了这2种斑岩矿床的主要地质特征,着重从流体包裹体、蚀变作用和稳定同位素研究来探讨斑铜矿床成矿流体的主要特征,包括成矿流体的成分、形成温度和压力,氢、氧、碳和硫稳定同位素组成。这两种类型的斑岩铜矿中主要发育5种包裹体:M熔体包裹体;Ⅰ液体包裹体;Ⅱ气体包裹体;Ⅲ含子矿物的多相包裹体和CO2_H2O包裹体。Ⅱ类和Ⅲ类包裹体常共存,且均一温度相似,表明成矿流体经历了不混溶和沸腾作用。在Ⅲ类含子矿物的包裹体中发现了含金属硫化物(黄铜矿、黄铁矿)和氧化物(赤铁矿、磁铁矿)子矿物。在斑岩金矿和碰撞造山带的斑岩铜矿中出现CO2_H2O包裹体,在斑岩的斑晶和一些早期石英脉的石英中可见到熔体包裹体以及熔体_流体包裹体,它们代表斑岩岩浆的样品,说明斑岩铜矿的形成经历了岩浆和热液阶段。最近的研究表明,斑岩铜矿的初始流体是中等盐度和密度的岩浆流体。这种流体在上升过程中因压力释放而发生沸腾,形成气体包裹体和含子矿物的高盐度包裹体。  相似文献   

12.
This study of La Gloria pluton in the Chilean Andes evaluates what information about magmatic conditions can be extracted from minerals in a granitic pluton, despite lower-temperature re-equilibration. The pluton is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite at the roof, with the uppermost 1500 m showing the strongest modal and compositional trends. This mimics the pattern frequently inferred from zoning in voluminous ignimbrites: a strongly zoned cap overlying a more homogeneous main␣body. The presence of large, euhedral amphibole ± biotite at the chamber margins and roof indicate that water was concentrated there. Biotite and amphibole compositions indicate a roofward increase in magmatic f HF, f HCl and F/Cl ratio, analogous to pre-eruptive volatile gradients recorded in zoned ignimbrites. Hornblende that crystallized directly from the melt in the volatile-rich wall and roof zones yields total-Al solidification pressures of ˜1 kbar, consistent with the estimated 4000 m of cover at the time of emplacement. In the core of the pluton, actinolitic amphibole formed by reaction of melt with early-crystallized clinopyroxene. Plag-cpx cumulate clots in the lower level are interpreted as early crystallizing phases entrained in rising granitic magma. Cores of amphibole phenocrysts in mafic enclaves suggest initial crystallization at pressures of 2–3 kbar. Lower Ti and Al contents of rims and acicular groundmass amphibole, overlapping the composition of amphibole in the host granitoid, indicate that the enclaves equilibrated with the host at the present exposure level in the presence of interstitial melt. A roofward relative increase in fO2 of the magma is recorded by an increasing proportion of Fe-Ti oxides as a fraction of the mafic phases, greater Mn content of ilmenite, and constant or higher Mg/(Mg+Fe) in hornblende and biotite despite declining whole-rock MgO contents. Association␣of subhedral biotite and magnetite with actinolitic amphibole in clots implies a reaction: K-Ti-hb + O2(gas) = bi + mt + actinolitic amph + titanite. Magnetite coexisting with biotite with Fe/(Fe+Mg) = 0.34– 0.40 implies temperatures of equilibration no lower than about 720–750 °C, i.e., late-magmatic rather than subsolidus. Saturation with respect to a water-rich vapor and subsequent diffusive loss of hydrogen may have caused this oxidation trend, which resulted in the most magnesian mafic phases occurring in the most compositionally evolved rocks, opposite to trends in most zoned ignimbrites, which presumably record conditions nearer the liquidus and prior to exsolution of a water-rich vapor. Two-feldspar and Fe-Ti-oxide geothermometers record subsolidus conditions in the pluton and yield higher temperatures for samples from the roof zone, suggesting that slower cooling at deeper levels allowed these minerals to continue to equilibrate to lower temperatures. Individual minerals span wide ranges in composition at any given level of the pluton, from those appropriate for phenocrysts, to those that record conditions well below the solidus. We suggest that the shallow level and isolated position of the pluton led to rapid escape of magmatic volatiles and rapid cooling, thereby preventing development of a long-lived hydrothermal system. Resulting small water/rock ratios may account for why late-magmatic and subsolidus re-equilibration were not pervasive. Received: 23 August 1996 / Accepted: 18 October 1996  相似文献   

13.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

14.
Hydrothermal zircon can be used to date fluid-infiltration events and water/rock interaction. At the Boggy Plain zoned pluton (BPZP), eastern Australia, hydrothermal zircon occurs with hydrothermal scheelite, molybdenite, thorite and rutile in incipiently altered aplite and monzogranite. The hydrothermal zircon is texturally distinct from magmatic zircon in the same rocks, occurring as murky-brown translucent 20–50 μm-thick mantles on magmatic cores and less commonly as individual crystals. The hydrothermal mantles are internally textureless in back-scatter electron and cathodoluminescence images whereas magmatic zircon is oscillatory zoned. The age of the hydrothermal zircon is indistinguishable from magmatic zircon, indicating precipitation from a fluid evolved from the magma during the final stages of crystallization. Despite indistinguishable U-Pb isotopic compositions, the trace-element compositions of the hydrothermal and magmatic zircon are distinct. Hydrothermal zircon is enriched in all measured trace-elements relative to magmatic zircon in the same rock, including V, Ti, Nb, Hf, Sc, Mn, U, Y, Th and the rare-earth elements (REE). Chondrite-normalized REE abundances form two distinct pattern groupings: type-1 (magmatic) patterns increase steeply from La to Lu and have Ce and Eu anomalies—these are patterns typical for unaltered magmatic zircon in continental crust rock types; type-2 (hydrothermal) patterns generally have higher abundances of the REE, flatter light-REE patterns [(Sm/La)N = 1.5–4.4 vs. 22–110 for magmatic zircon] and smaller Ce anomalies (Ce/Ce* = 1.8–3.5 vs. 32–49 for magmatic zircon). Type-2 patterns have also been described for hydrothermally-altered zircon from the Gabel Hamradom granite, Egypt, and a granitic dyke from the Acasta Gneiss Complex, Canada.Hadean (∼4.5–4.0 Ga) zircon from the Jack Hills, Western Australia, have variable normalized REE patterns. In particular, the oldest piece of Earth—zircon crystal W74/2-36 (dated at 4.4 Ga)—contains both type-1 and type-2 patterns on a 50 μm scale, a phenomenon not yet reported for unaltered magmatic zircon. In the context of documented magmatic and hydrothermal zircon compositions from constrained samples from the BPZP and the literature, the type-2 patterns in crystal W74/2-36 and other Jack Hills Hadean (JHH) zircon are interpreted as hydrothermally-altered magmatic compositions. An alteration scenario, constrained by isotope and trace-element data, as well as α-decay event calculations, involving fluid/zircon cation and oxygen isotope exchange within partially metamict zones and minor dissolution/reprecipitation, may have occurred episodically for some JHH zircon and at ∼4.27 Ga for zircon W74/2-36. Type-2 compositions in JHH zircon are interpreted to represent localized exchange with a light-REE-bearing, high δ18O (∼6–10‰ or higher) fluid. Thus, a complex explanation involving “permanent” liquid water oceans, large-scale water/rock interaction and plate tectonics in the very early Archean is not necessary as the zircon textures and compositions are simply explained by exchange between partially metamict zircon and a low volume ephemeral fluid.  相似文献   

15.
陈欢  冯梦  康志强  付伟  冯佐海 《地球科学》2020,45(6):2059-2076
为了解桂东北伟晶岩岩浆的形成环境及演化过程,对桂东北茅安塘Nb-Ta-Be-Rb稀有金属矿床周围伟晶岩中的石榴子石进行了镜下观察、电子探针(EPMA)和LA-ICP-MS原位微区主微量元素研究,探讨石榴子石的成因及其对成岩及成矿作用的指示.结果表明,桂东北茅安塘地区伟晶岩中的石榴子石为岩浆成因石榴子石,属于铁铝榴石-锰铝榴石(平均Alm49.28-Sps47.09)固溶体系列,可分为早期形成的Ⅰ型石榴子石(GrtⅠ)和晚期形成的Ⅱ型子石(GrtⅡ).两期石榴子石均以富集重稀土(HREE)、高场强元素(HFSE),亏损轻稀土(LREE)和缺乏大离子亲石元素(LILE)为特征,∑REE配分模式呈明显左倾趋势,显著的Eu负异常.石榴子石生长过程中的界面反应速率小于物质迁移速率,水岩作用较弱,∑REE主要以表面吸附或吸收的形式进入石榴子石中,是导致其重稀土(HREE)元素富集,轻稀土元素亏损的主要原因.随着岩浆分异演化程度的不断提高,∑REE逐渐进入并赋存于石榴子石中,促进岩浆从早期的低分馏(未分馏)的岩浆熔体逐渐向晚期的高分馏的岩浆熔体演化.石榴子石中HREE含量随岩浆演化程度逐渐增加表明,晚期分异演化的岩浆-热液中逐渐富集稀土及稀有金属元素.这些晚期富含成矿元素的热液流体交代原生矿物,导致外侧带及核部花岗伟晶岩中发育大量交代成因的稀土和稀有金属矿物.   相似文献   

16.
This work describes rare accessory minerals in volcanic and subvolcanic silica-undersaturated peralkaline and agpaitic rocks from the Permo-Triassic Cerro Boggiani complex (Eastern Paraguay) in the Alto Paraguay Alkaline Province. These accessory phases consist of various minerals including Th-U oxides/silicates, Nb-oxide, REE-Sr-Ba bearing carbonates-fluorcarbonates-phosphates-silicates and Zr-Na rich silicates. They form a late-stage magmatic to deuteric/metasomatic assemblage in agpaitic nepheline syenites and phonolite dykes/lava flows made of sodalite, analcime, albite, fluorite, calcite, ilmenite-pyrophanite, titanite and zircon. It is inferred that carbonatitic fluids rich in F, Na and REE percolated into the subvolcanic system and metasomatically interacted with the Cerro Boggiani peralkaline and agpaitic silicate melts at the thermal boundary layers of the magma chamber, during and shortly after their late-stage magmatic crystallization and hydrothermal deuteric alteration.  相似文献   

17.
The West Farrington pluton in the North Carolina Piedmont isconcentrically zoned from gabbro-diorite near the chilled marginsto leucogranodiorite in the center. A crystallization modelfor the West Farrington pluton has been derived utilizing chemical,petrographic, field, and experimental data. The model involvessimple in situ fractional crystallization from the margins inward,with minimal contamination, crystal settling and floating, ormetasomatism. Rocks of the pluton can be considered as mixturesof early crystallizing minerals (liquidus or near-liquidus phases)and crystallized interstitial liquids. Relative percentage ofentrapped pore liquid increased with increasing degree of crystallization. The original tonalite magma began crystallizing Fe-Ti spinels,plagioclase, and hornblende within a short temperature interval.Crystallization of these minerals controlled fractionation trends.The initial water content in the magma was probably 2–3per cent; under such conditions water saturation would havebeen reached after about 60 per cent of the magma crystallized,assuming crystallization in the lower epizone at about 2000bars total pressure.  相似文献   

18.
浙江临安石室寺伟晶岩位于河桥岩体西北面,属于典型的Nb-Y-F (NYF) 型伟晶岩,富含大量稀有稀土矿物。本文在野外考察和显微镜观察的基础上,结合电子探针背散射电子图像观察与矿物化学成分分析,系统鉴定了石室寺NYF 型伟晶岩中的稀有稀土矿物,揭示了稀有稀土元素的富集、迁移、结晶与成矿过程。研究结果表明:(1) 石室寺伟晶岩中的稀有稀土矿物有铌钽矿物(铌铁矿、铌锰矿、重钽铁矿、细晶石等)、钇矿物(褐钇铌矿、黑稀金矿)、钨矿物(黑钨矿、 白钨矿、铌钨矿物)、铈矿物(独居石、氟铈矿、氟碳铈矿) 和钍矿物等。(2) 铌钨系列矿物的WO3含量在8.30~70.51 wt%之间呈规律变化,可能为铌铁矿与黑钨矿之间形成的一系列多体矿物。(3) 铌铁矿LA-ICP-MS U-Pb 定年结果显示,石室寺伟晶岩的形成年龄为133±2 Ma,与河桥花岗岩具有成因联系。(4) 石室寺NYF 型伟晶岩中稀有稀土元素的成矿过程与其岩浆的结晶演化密切相关:岩浆阶段,锆石、钍石与独居石等矿物最早晶出;岩浆—热液阶段,黑稀金矿、铌铁矿、褐钇铌矿、氟铈矿等稀有稀土矿物逐渐结晶;热液阶段,黑钨矿、铌钨矿物相继形成,同时早期的独居石、氟铈矿受晚期热液交代形成次生铈矿物。  相似文献   

19.
浙江临安石室寺伟晶岩位于河桥岩体西北面,属于典型的Nb-Y-F (NYF) 型伟晶岩,富含大量稀有稀土矿物。本文在野外考察和显微镜观察的基础上,结合电子探针背散射电子图像观察与矿物化学成分分析,系统鉴定了石室寺NYF 型伟晶岩中的稀有稀土矿物,揭示了稀有稀土元素的富集、迁移、结晶与成矿过程。研究结果表明:(1) 石室寺伟晶岩中的稀有稀土矿物有铌钽矿物(铌铁矿、铌锰矿、重钽铁矿、细晶石等)、钇矿物(褐钇铌矿、黑稀金矿)、钨矿物(黑钨矿、 白钨矿、铌钨矿物)、铈矿物(独居石、氟铈矿、氟碳铈矿) 和钍矿物等。(2) 铌钨系列矿物的WO3含量在8.30~70.51 wt%之间呈规律变化,可能为铌铁矿与黑钨矿之间形成的一系列多体矿物。(3) 铌铁矿LA-ICP-MS U-Pb 定年结果显示,石室寺伟晶岩的形成年龄为133±2 Ma,与河桥花岗岩具有成因联系。(4) 石室寺NYF 型伟晶岩中稀有稀土元素的成矿过程与其岩浆的结晶演化密切相关:岩浆阶段,锆石、钍石与独居石等矿物最早晶出;岩浆—热液阶段,黑稀金矿、铌铁矿、褐钇铌矿、氟铈矿等稀有稀土矿物逐渐结晶;热液阶段,黑钨矿、铌钨矿物相继形成,同时早期的独居石、氟铈矿受晚期热液交代形成次生铈矿物。  相似文献   

20.
Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy   总被引:16,自引:7,他引:9  
ABSTRACT The Tertiary Adamello calc-alkaline batholith in the ItalianAlps is characterized by tonalite and granodiorite plutons associatedwith small mafic/ultramafic intrusions, syn-plutonic mafic dykesand sills, and ubiquitous mafic inclusions. In the southernmostVal Fredda Complex, syn-plutonic hornblende-gabbro and dioritesheets pass laterally into swarms of mafic inclusions intermingledwith tonalite. Petrological and geochemical data show that themafic sheets represent hydrous mafic magmas derived by fractionalcrystallization from parental hydrous basalt and picro-basalt.The fractionation process is recorded by inclusions of spinel,olivine, and pyroxenes in the cores of hornblende phenocrystsand by the widespread occurrence of calcic plagioclase. Fractionationoccurred at high pressure (Ptoul = 8–10 kb) before intrusionat shallow depths (Ptotal 2 kb). Geothermometry and meltingexperiments at PH2O= 1 kb, combined with textural evidence,indicate that the mafic sheets were emplaced at temperaturesof 1050–1100C into hot, but consolidated, granitoid hostrocks. Transfer of heat and hydrous fluids from the sheets remobilizedthe host rocks into crystal-mush, which in turn disrupted thesheet margins to form mafic inclusions. Dynamic crystallizationexperiments indicate that the mafic inclusions and sheet marginswere quenched to temperatures below 970 C, resulting in thefailure of the high-temperature liquidus phases olivine andclinopyroxene to nucleate and the formation of acicular hornblendeand plagioclase. Several other Adamello plutons display syn-plutonicintrusions and mafic inclusions with comparable features tothe Val Fredda Complex. The Adamello mafic inclusions show pronounced enrichments incertain trace elements compared with values expected by fractionalcrystallization and magma mixing. K, Rb, Ba, Y, heavy REE, Mn,and Nb have absolute abundances in the inclusions greater thanthe interiors of neighbouring mafic sheets and, in some cases,than the host granitoids. Many inclusions also display leucocratichaloes, margins rich in ferromagnesian minerals and abundantgroundmass biotite. These features are interpreted in termsof a three-stage evolution. (1) A blob of mafic magma is quenchedby the felsic host to form a rigid crystal-rich inclusion containingan interstitial melt phase. Leucocratic haloes and crenulatemargins to the inclusions form as a result of volume contractionon cooling. (2) The more mobile elements (notably the alkalisand H2O) diffuse between the melt phases of host and inclusion.Using published experimental data on the variation of melt fractionwith temperature in hydrous basic and acid magmas, it is arguedthat the observed diffusion of K from host to inclusion requiresinteraction temperatures of >900C. Reaction of K-enrichedmelt with existing hornblende in the inclusion forms biotite,which sequesters and concentrates further K2O and other alkalineelements. (3) During protracted cooling the mafic inclusionsequilibrate with interstitial melt in the host granitoid. Equilibriumpartitioning of heavy REE and Y into the mafic minerals in theinclusion results in the observed enrichments. Magnetite likewiseconcentrates Nb and Mn. It is proposed that mafic inclusions form in the waning stageof pluton evolution when the granitoid magma is sufficientlyconsolidated to allow the penetration of mafic intrusions, butsufficiently hot to be readily remobilized and disrupt theseintrusions to form mafic inclusions. Subsequent chemical equilibrationof mafic inclusions with their host can have a marked impacton the trace element chemistry of both rock types. Granitoidswhich have experienced extensive interaction with mafic inclusion-formingmagmas may undergo significant depletion in those trace elementswhich partition strongly into the minerals of the mafic inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号