首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing long‐range correlation, complexity features and clustering, this study investigated the influence of dam and lake‐river systems on the Yangtze River flow. The impact of the Gezhouba Dam and the lake systems on streamflow was evaluated by analysing daily streamflow records at the Cuntan, the Yichang and the Datong station. Results indicated no evident influence of the Gezhouba Dam on streamflow changes. Distinct differences in scaling behaviour, long‐range correlation and clustering of streamflow at the Datong station when compared with those at the Cuntan and Yichang stations undoubtedly showed the influence of water storage and the buffering effect of the lake systems between the Datong station and other two hydrological stations on streamflow in the lower Yangtze River basin. Decreased regularity, enhanced long‐range correlation and increased clustering of streamflow in the lower Yangtze River basin due to the effect of water storage of the lake systems were corroborated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Using updated hydrological datasets from three stations, including Cuntan, Yichang and Hankou, covering the period of January 1992–December 2008, the influence of Three Gorges Dam (TGD) on streamflow and sediment load of the Yangtze River was investigated. Results indicated that TGD did not seem to exert a significant influence on streamflow occurring at three stations and changes in streamflow can be mainly attributed to streamflows of tributaries. However, a sharp decrease in the sediment load after the impoundment of TGD was observed. Clear water after the impoundment caused erosion of riverbed and resulted in more sediment at the Hankou station than at the Yichang station. No distinct changes in the annual and monthly maximum sediment loads were observed before and after the impoundment. Therefore, annual and monthly maximum sediment load changes should be subjected mainly to river hydraulics. This study has practical relevance for understanding the influence of large hydraulic structures on the hydrological processes of large rivers.  相似文献   

3.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Scaling and multifractal properties of the hydrological processes of the Yangtze River basin were explored by using a multifractal detrended fluctuation analysis (MF‐DFA) technique. Long daily mean streamflow series from Cuntan, Yichang, Hankou and Datong stations were analyzed. Using shuffled streamflow series, the types of multifractality of streamflow series was also studied. The results indicate that the discharge series of the Yangtze River basin are non‐stationary. Different correlation properties were identified within streamflow series of the upper, the middle and the lower Yangtze River basin. The discharge series of the upper Yangtze River basin are characterized by short memory or anti‐persistence; while the streamflow series of the lower Yangtze River basin is characterized by long memory or persistence. h(q) vs q curves indicate multifractality of the hydrological processes of the Yangtze River basin. h(q) curves of shuffled streamflow series suggest that the multifractality of the streamflow series is mainly due to the correlation properties within the hydrological series. This study may be of practical and scientific importance in regional flood frequency analysis and water resource management in different parts of the Yangtze River basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
全球主要河流已成为受梯级水库控制的人工调节系统.河流鱼类作为淡水生态系统的重要组成部分,在人类对河流水能资源开发利用的进程中,面临着种群退化、多样性丧失的巨大胁迫.水库生态调度是在鱼类关键生命期人为营造满足鱼类需求的水文水动力条件,减缓水库不利生态影响的一种生态环保措施.然而,在生态调度的实践过程中,受水库不同运行方式...  相似文献   

6.
Using the multi‐scale entropy analysis (MSE), we study the effects of water reservoirs on the river flow records based on long streamflow series covering January 1, 1954 and December 31, 2009 at four representative hydrological stations, i.e. the Longchuan, the Heyuan, the Lingxia and the Boluo stations. Hydrological effects of two major water reservoirs, the Xinfengjiang and the Fengshuba water reservoirs, are evaluated. The results indicate that: (1) before the construction of the water reservoirs, the complexity of the streamflow series comes to be decreasing from the upper to the lower East River and which should be attributed to the topographical properties and buffering effects of the river channel; (2) construction of water reservoirs greatly increases the complexity degree of the hydrological processes, and this influence is subjected to a damping process with the increase of distance between the water reservoirs and the hydrological stations; (3) power generation is the major function of the water reservoirs in the East River basin. The results of this study should be of theoretical and scientific merits in terms of conservation of the ecological environment and also water resources management under the influences of climate changes and intensifying human activities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Since the Three Gorges Reservoir (TGR) was put into operation in June 2003, the effects of the TGR on downstream hydrology and water resources have become the focus of public attention. This article examines the effects of the TGR on the hydrological droughts at the downstream Yichang hydrological station during 2003–2011. The two‐parameter monthly water balance model was used to generate the monthly discharges at the Yichang station for the period of 2003–2011 to represent the unregulated flow regime and thus to provide a comparison benchmark for the observed flow series at the Yichang station after the operation of the TGR. To provide a reference series for the observed monthly discharge series of the entire study period of 1951–2011, we constructed the naturalized monthly discharge series at the Yichang station by joining the observed monthly discharge at the Yichang station for the period of 1951–2002 and the two‐parameter monthly water balance simulated monthly runoff at the Yichang station for the period of 2003–2011. For both the observed and naturalized monthly discharge series of 1951–2011, the hydrological drought index series were calculated using the standardized streamflow index method. By comparing the drought indices of these two monthly discharge series, we investigated the effects of the TGR on the hydrological droughts at the downstream Yichang station during 2003–2011. The results show that the hydrological droughts at the downstream Yichang station are slightly aggravated by the TGR's initial operation from 2003 to 2011. The river flow reduction at the Yichang station after impoundment of the TGR might account for the downstream drought aggravation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The abrupt changes in the streamflow and sediment load at nine hydrological stations of the Pearl River basin were systematically analysed by using the simple two‐phase linear regression scheme and the coherency analysis technique. Possible underlying causes were also discussed. Our study results indicated that abrupt changes in the streamflow occurred mainly in the early 1990s. The change points were followed by significant decreasing streamflow. Multiscale abrupt behaviour of the sediment load classified the hydrological stations into two groups: (1) Xiaolongtan, Nanning and Liuzhou; and (2) Qianjiang, Dahuangjiangkou, Wuzhou, Gaoyao, Shijiao and Boluo. The grouped categories implied obvious influences of water reservoirs on the hydrological processes of the Pearl River. On the basis of analysis of the locations and the construction time of the water reservoirs, and also the time when the change points occurred, we figured out different ways the water reservoirs impacted the hydrological processes within the Pearl River basin. As for the hydrological variation along the mainstream of the Pearl River, the water reservoirs have considerable influences on both the streamflow and sediment load variations; however, more influences seemed to be exerted on the sediment load transport. In the North River, the hydrological processes seemed to be influenced mainly by climate changes. In the East River, the hydrological variations tended to be impacted by the water reservoirs. The study results also indicated no fixed modes when we address the influences of water reservoirs on hydrological processes. Drainage area and regulation behaviour of the water reservoirs should be taken into account. The results of this study will be of considerable importance for the effective water resources management of the Pearl River basin under the changing environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The Three Gorges Dam is the world's largest capacity hydropower station located in the Hubei province along the Yangtze River in China, which began operations in 2003. The dam also functions to store and regulate the downstream releases of water in order to provide flood control and navigational support in addition to hydropower generation. Flow regulation is particularly important for alleviating the impacts of low- and high-flow events during the summer rainy season (June, July, and August). The impact of dam operations on summer flows is the focus of this work. Naturalized flows are modelled using a canonical correlation analysis and covariates of subbasin-scale precipitation resulting in good model skill with an average correlation of 0.92. The model is then used to estimate natural flows in the period after dam operation. A comparison between modelled and gauged streamflow post 2003 is made and the impact of the dam on downstream flow is assessed. Streamflow variability is found to be strongly related to rainfall variability. An analysis of regional streamflow variability across the Yangtze River Basin showed a mode of spatially negatively correlated variability between the upper and lower basin areas. The Three Gorges Dam likely mitigated the occurrence of high-flow events at Yichang station located near the dam. However, the high flow at the remaining stations in the lower reach is not noticeably alleviated due to the diminishing influence of the dam on distant downstream flows and the impact of the lakes downstream of the dam that act to attenuate flows. Three types of flow regime changes between naturalized and observed flows were defined and used to assess the changes in the occurrence of high- and low-flow events resulting from dam operations.  相似文献   

10.
李彦彦  李冰  杨桂山  万荣荣 《湖泊科学》2021,33(6):1885-1897
河湖水文连通性强弱对于维系流域水资源安全、河湖生态系统稳定等方面具有重要意义.本文首先利用1960-2019年松滋口新江口与沙道观两站与干流枝城站实测水文资料以及河道典型横断面地形资料,采用Mann-Kendall法与趋势线法分析讨论枯水期松滋口分流变化的特征与诱因,然后,针对枯水期松滋口河道的分流问题提出河道治理方案.结果表明:松滋口枯水期的流量主要来自西支.在1960-2019年间,枯水期西支分流量呈现三峡大坝蓄水运行前后从下降趋势转变为显著上升趋势,而东支分流量在下荆江裁弯后至今基本处于断流状态,下荆江裁弯、葛洲坝运行及三峡大坝蓄水运行是其分流量变化的主要诱因.根据建立分流量与水位差(干流水位与河底高程)的回归关系,模拟出在松滋口西东支现有河道的基础上,河床高程分别下降1 m与2.5 m左右,其分流量可达到或接近1960s分流量水平,有助于缓解区域水资源与环境生态问题.  相似文献   

11.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   

12.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we analyzed the high/low water levels of eight stations along the Pearl River estuary and the high/low tidal levels of Sanzao station, and streamflow series of Sanshui and Makou stations using wavelet transform technique and correlation analysis method. The behaviors of high/low water levels of the Pearl River estuary, possible impacts of hydrological processes of the upper Pearl River Delta and astronomical tidal fluctuations were investigated. The results indicate that: (1) the streamflow variability of Sanshui and Makou stations is characterized by 1-year period; 1-, 0.5- and 0.25-year periods can be detected in the high tidal level series of Sanzao station, which reflect the fluctuations of astronomical tidal levels. The low tidal level series of Sanzao station has two periodicity elements, i.e. 0.5- and 0.25-year periods; (2) different periodicity properties have been revealed: the periods of high water levels of the Pearl River estuary are characterized by 1-, 0.5- and 0.25-year periods; and 1-year period is the major period in the low water levels of the Pearl River estuary; (3) periodicity properties indicate that behaviors of low water levels are mainly influenced by hydrological processes of the upper Pearl River Delta. High water levels of the Pearl River estuary seem to be affected by both hydrological processes and fluctuations of astronomical tidal levels represented by tidal level changes of Sanzao station. Correlation analysis results further corroborate this conclusion; (4) slight differences can be observed in wavelet transform patterns and properties of relationships between high/low water levels and streamflow changes. This can be formulated by altered hydrodynamic and morphodynamic processes due to intensifying human activities such as construction of engineering infrastructures and land reclamation.  相似文献   

14.
15.
The ‘range of variability approach’ (RVA) and mapping technique are used to investigate the spatial variability of hydrologic alterations (HA) due to dam construction along the middle and lower Yellow River, China, over the past five decades. The impacts of climate variability on hydrological process have been removed during wet and dry periods and the focus is on the impacts of human activities, such as dam construction, on hydrological processes. Results indicate the following: (1) The impacts of the Sanmenxia reservoir on the hydrologic alteration are relatively slight with a mean HA value of 0·48, ranking in the last place among the four large reservoirs. (2) Xiaolangdi reservoir has significantly changed the natural flow regime downstream with mean HA value of 0·56, ranking it in first place among the large reservoirs. (3) The results of ranked median degrees of 33 hydrologic alteration indicators for 10 stations in the Yellow River show that the hydrologic alteration of Huayuankou ranks the highest among 10 stream gauges. (4) Impacts of reservoirs on hydrological processes downstream of the dams are closely associated with the regulating activities of the reservoirs. At the same time, alterations of streamflow regimes resulting from climatic changes (e.g. precipitation variability) make the situation more complicated and more hydrological observations will be necessary for further analysis. The results of the current study will be greatly beneficial to the regional water resources management and restoration of eco‐environmental systems in the middle and lower Yellow River characterized by intensified dam construction under a changing environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(3):582-595
Abstract

This paper explores the potential for seasonal prediction of hydrological variables that are potentially useful for reservoir operation of the Three Gorges Dam, China. The seasonal flow of the primary inflow season and the peak annual flow are investigated at Yichang hydrological station, a proxy for inflows to the Three Gorges Dam. Building on literature and diagnostic results, a prediction model is constructed using sea-surface temperatures and upland snow cover available one season ahead of the prediction period. A hierarchical Bayesian approach is used to estimate uncertainty in the parameters of the prediction model and to propagate these uncertainties to the predictand. The results show skill for both the seasonal flow and the peak annual flow. The peak annual flow model is then used to estimate a design flood (50-year flood or 2% exceedence probability) on a year-to-year basis. The results demonstrate the inter-annual variability in flood risk. The predictability of both the seasonal total inflow and the peak annual flow (or a design flood volume) offers potential for adaptive management of the Three Gorges Dam reservoir through modification of the operating policy in accordance with the year-to-year changes in these variables.  相似文献   

17.
The East River in the Pearl River basin, China, plays a vital role in the water supply for mega‐cities within and in the vicinity of the Pearl River Delta. Knowledge of statistical variability of streamflow is therefore important for water resources management in the basin. This study analyzed streamflow from four hydrological stations on the East River for a period of 1951–2009, using ensemble empirical mode decomposition (EEMD), continuous wavelet transform (CWT) technique, scanning t and F tests. Results indicated increasing/decreasing streamflow in the East River basin before/after the 1980s. After the early 1970s, the high/low flow components were decreasing/increasing. CWT‐based analysis demonstrates a significant impact of water reservoirs on the periodicity of streamflow. Scanning t and F test indicates that significantly abrupt changes in streamflow are largely influenced by both water reservoirs construction and precipitation changes. Thus, changes of streamflow, which are reflected by variations of trend, periodicity and abrupt change, are due to both water reservoir construction and precipitation changes. Further, the changes of volume of streamflow in the East River are in good agreement with precipitation changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Dam construction greatly alters the channel boundary of rivers, making the dammed river system a human‐controlled system. Based on hydrometric data in the upper Changjiang River basin, the change in behaviour of sediment transport of some dammed rivers was studied. As a result, some phenomena of threshold and complex response were found. When the coefficient (Cr,a) of actual runoff regulation by reservoirs, defined as the ratio of total capacity of reservoirs to annual runoff input, is smaller than 10%, suspended sediment load at Yichang station, the control station of the Changjiang River, shows a mild decreasing trend. When this coefficient becomes larger than 10%, suspended sediment load decreases sharply. The coefficient of 10% can be regarded as a threshold. The Cr,a of 10% is also a threshold, when the variation of suspended sediment concentration (SSC) with Cr,a at Yichang station is considered. The impacts of reservoir construction can be divided into several stages, including road construction, dam building and closure, water storage and sediment trapping. During these stages, some complex response was identified. At the station below the dam, SSC increases and reaches a maximum, and then declines sharply. This phenomenon was found on the main‐stem and several major tributaries of the upper Changjiang River. In the Minjiang River, where a series of dams were built successively, the response of SSC is more complicated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Sound understanding of hydrological alterations and the underlying causes means too much for the water resource management in the Pearl River Delta. Incision of river channels plays the key role in the hydrological alterations. As for the causes behind the river channel incision, sand dredging within the river network of the Pearl River Delta is usually assumed to play the overwhelming role in changes of geometric shapes of the river channels. Based on thorough analysis of well-collected data of channel geometry, streamflow, sediment load and water level, this study exposes new findings, investigating possible underlying causes behind the changes of the geometric shapes of the river channels at the Sanshui and Makou station. The results of this study indicate: (1) different changing properties of the geometric shapes are identified at the Sanshui and Makou stations. Larger magnitude of changes can be found in the river channel geometry of the cross section at the Sanshui station when compared to that at the Makou station. Lower water level due to fast riverbed downcutting at the Sanshui station than that at the Makou station is the major reason why the reallocation of streamflow occurred and hence the hydrological alterations over the Pearl River Delta; (2) depletion of sediment load as a result of construction of water reservoirs in the middle and upper Pearl River basin, sand dredging mainly in the Pearl River Delta and heavy floods all contribute much to the incision or deposition of the riverbed. Regulations of erosion and siltation process of the river channel often alleviate the incision of the river channels after a relatively long time span, and which makes it even harder to differentiate the factors causing the river channel incision; (3) the intensifying urbanization in the lower Pearl River basin greatly alters the underlying surface properties, which has the potential to shorten the recession of the flood event and may cause serious scouring processes and this role of flash floods in the incision of the river channels can not be ignored. This study is of great scientific and practical merits in improving human understanding of regulations of river channels and associated consequences with respect to hydrological alterations and water resource management, particularly in the economically booming region of China.  相似文献   

20.
We analyzed long daily runoff series at six hydrological stations located along the mainstem Yellow River basin by using power spectra analysis and multifractal detrended fluctuation analysis (MF-DFA) technique with aim to deeply understand the scaling properties of the hydrological series in the Yellow River basin. Research results indicate that: (1) the runoff fluctuations of the Yellow River basin exhibit self-affine fractal behavior and different memory properties at different time scales. Different crossover frequency (1/f) indicates that lower crossover frequency usually corresponds to larger basin area, and vice versa, showing the influences of river size on higher frequency of runoff variations. This may be due to considerable regulations of river channel on the runoff variations in river basin of larger basin size; (2) the runoff fluctuations in the Yellow River basin exhibit short-term memory properties at smaller time scales. Crossover analysis by MF-DFA indicates unchanged annual cycle within the runoff variations, implying dominant influences of climatic changes on changes of runoff amount at longer time scales, e.g. 1 year. Human activities, such as human withdrawal of freshwater and construction of water reservoirs, in different reaches of the Yellow River basin may be responsible for different scaling properties of runoff variations in the Yellow River basin. The results of this study will be helpful for hydrological modeling in different time scales and also for water resource management in the arid and semi-arid regions of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号