首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
江西弋阳铁砂街中元古代海底火山喷流成矿作用   总被引:3,自引:0,他引:3  
江西弋阳铁砂街铜矿产于中元古代晚期海相火山岩中,矿床在大地构造环境、含矿地层建造、矿体形态、喷流岩组合、喷流岩主量-微量-稀土元素地球化学、同位素地球化学方面都具有海底火山喷流沉积的典型特征,是扬子板块、华夏板块边缘中元古代裂谷海底火山喷流沉积作用的产物。  相似文献   

2.
Lead isotope data of sulfides and host volcanic rocks from the Bukit Botol and Bukit Ketaya deposits, the two representative deposits of the Tasik Chini volcanic‐hosted massive sulfide (VHMS) deposit, Central Belt of Peninsular Malaysia, are reported. Lead isotope compositions of the associated sulfide minerals and volcanic rocks from the Bukit Botol deposit exhibit homogeneous and less radiogenic values (206Pb/204Pb showing a range of composition from 18.14 to 18.20, 207Pb/204Pb between 15.52 and 15.59 and 208Pb/204Pb from 37.96 to 38.35). Similarly, the Pb isotopic compositions of the host volcanic rocks from the Bukit Ketaya deposit yielded a narrow range to those of the sulfide samples (206Pb/204Pb from 18.04 to 18.20, 207Pb/204Pb between 15.43 and 15.57 and 208Pb/204Pb of 37.96 to 38.30). The uniform Pb‐isotope compositions of the sulfides in the ore horizon and the host volcanic rocks from both deposits suggest a derivation from a similar source reservoir and mineralization processes. In the framework of the tectonic model for the Central Belt of Peninsular Malaysia, both deposits display a range of lead isotopic compositions originated from mixing of bulk crust/juvenile arc and minor mantle sources, which are typical for VHMS deposits in an island arc–back arc setting.  相似文献   

3.
Abstract Bahía Concepción is located in the eastern coast of the Baja California peninsula and it is shaped by northwestern–southeastern normal faults. These are associated with a 12–6 Ma rifting episode, although some have been reactivated since the Pliocene. The most abundant rocks correspond to the arc related Comondú Group, Oligocene to Miocene, which forms a mainly calc‐alkaline volcanic and volcaniclastic sequence. There are less extensive outcrops of sedimentary rocks, lava flows, domes and pyroclastic rocks of Pliocene to Quaternary ages. The Neogene volcanism in the area indicates a shift from a subduction regime to an intraplate volcanism related to continental extension and the opening of an oceanic basin. The Bahía Concepción area contains numerous Mn ore deposits, being the biggest at El Gavilán and Guadalupe. The Mn deposits occur as veins, breccias and stockworks, and are composed by Mn oxides (pyrolusite, coronadite, romanechite), dolomite, quartz and barite. The deposits are hosted in volcanic rocks of the Comondú Group and, locally, in Pliocene sedimentary rocks. Thus, the Mn deposits formed between the Middle Miocene and the Pliocene. The mineralized structures are associated with Miocene northwestern–southeastern fault systems, which are analogous to those associated with the Cu‐Co‐Zn‐Mn deposits of El Boleo. The Bahía Concepción area also bears subaerial and submarine hot springs, which are associated with the same fault systems and host rocks. The submarine and subaerial geothermal manifestations south of the bay are possibly related with recent volcanism. The geothermal manifestations within the bay are intertidal hot springs and shallow submarine diffuse venting areas. Around the submarine vents (5–15 m deep, 87°C), Fe‐oxyhydroxide crusts with pyrite and cinnabar precipitate. In the intertidal vents (62°C), aggregates of opal, calcite, barite and Ba‐rich Mn oxides occur covered by silica‐carbonate stromatolitic sinters. Some 10–30 cm thick crustiform veins formed by chalcedony, calcite and barite are also found close to the vents. The hydrothermal fluids exhibit mixed isotopic compositions between δ18O‐enriched meteoric and local marine water. The precipitation of Ba‐rich Mn oxides around the vent sites could be an active analog for the processes that produced Miocene to Pliocene hydrothermal Mn‐deposits.  相似文献   

4.
Submarine hydrothermal manganese deposits are relatively common along the Izu–Bonin – Mariana (IBM) arc but hydrothermal iron crusts are much less so. The hydrothermal manganese deposits show characteristics typical of submarine hydrothermal manganese deposits found worldwide. Recent hydrothermal manganese deposits associated with active hydrothermal systems occur on seamounts or rifts located ∼ 5–40 km behind the volcanic front on the Shichito-Iwojima Ridge, IBM. Fossil hydrothermal manganese deposits associated with older hydrothermal systems occur on inactive seamounts located on ridges running parallel to the volcanic front in both forearc and back-arc settings. These fossil hydrothermal manganese deposits are generally overlain by younger hydrogenetic manganese crusts. Differences in minor element composition and in the rare earth element pattern of hydrothermal manganese deposits from the forearc and back-arc settings may reflect differences in the nature of substrate rocks or temperature of the hydrothermal fluids at these locations.  相似文献   

5.
青海扎日根结扎群火山岩中基性岩以贫硅、钾,高钛、钙,中性岩类以低硅、中钾、钛、钙,酸性岩类以高硅、钾,中钛,低钙为特征。根据Fe*/MgO-TiO2图解上显示出本区火山岩绝大多数火山岩落在岛弧区。微量元素中Th/Nb=0.9〉0.11,Nb/Zr〉0.04显示出其构造背景为陆-陆碰撞形成的岛弧区。扎日根结扎群火山岩时代Rb-Sr同位素等时线给出的年龄为231±28Ma和225±8 Ma,属晚三叠世。另外Sr同位素的初始比值ISr=0.70522±0.00023,小于0.719,表明岩浆(原始)来源于上地幔,并且在上升的过程中受到地壳的混染。  相似文献   

6.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   

7.
Detailed petrographic analysis of calcalkaline volcanic rocks of Shirouma-Oike volcano, Japan, reveals that the complex phenocryst assemblage (Ol+Cpx+Opx+Hb+Bt+Qz+Pl+Mt+Hm) in the younger group volcanic rocks can be divided into two groups, a high temperature group (Ol+Cpx±An-rich Pl) and a low temperature group (Op+Hb+Bt+Qz±Ab-rich Pl+Mt+Hm). Compositional zonation of the phenocrystic minerals, normal zoning in olivine and clinopyroxene, and reverse zoning in orthopyroxene and plagioclase, indicate that these two groups of phenocrysts precipitated from two different magmas which mixed before the eruption. The low temperature magma is a stagnant magma in a shallow magma chamber, to which high temperature basaltic magma is intermittently supplied. Magma mixing is also indicated in olivine-bearing two pyroxene andesite of the older group volcanic rocks, by the coexistence of normally zoned Mg-rich clinopyroxene phenocrysts and reversely zoned Fe-rich clinopyroxene phenocrysts, and by reverse zoning in orthopyroxene phenocrysts. It is concluded that magma mixing is an important process responsible for the generation of the disequilibrium features in calc-alkaline volcanic rocks.  相似文献   

8.
The Ezine region is located in the northwestern part of Anatolia where young granitic and volcanic rocks are widespread and show close spatial and temporal association. In this region magmatism began with the Kestanbol granite, which intruded into metamorphic basement rocks, and formed contact metamorphic aureole. To the east and southeast the pluton is surrounded by hypabyssal rocks, which in turn, are surrounded by volcanic associations. The volcanic rocks may be divided into two main groups on the basis of their lithological properties. Lavas and lahar deposits dominate the northern sector while ignimbrites dominate the southern sector. The ignimbrite eruptions were formed partly coevally with the plutonic and the associated volcanic rocks during the early Miocene. They appear to have been associated in a caldera collapse environment. Geochemical properties of the plutonic and the associated volcanic assemblages indicate that the magmas are hybrid and co-genetic and, were formed from a similar mantle source, under a compressional regime prior to the opening of the present E–W-trending graben of the Aegean western Anatolian region.  相似文献   

9.
斑岩铜矿与陆相火山活动   总被引:9,自引:0,他引:9       下载免费PDF全文
斑岩铜矿主要产于聚合板块的上盘 ,是岛弧和活动大陆边缘花岗岩质岩浆 -热液系统 (其中包括火山作用 )演化的产物 ,从斑岩铜矿带与近同期陆相火山岩的关系来看 ,可以归纳为 2种 :一种是斑岩铜矿床或矿田内有同期或稍早期的陆相火山活动 ,例如江西银山、内蒙古乌努格吐山和安徽沙溪等 ;另一种是斑岩铜矿床或矿田内缺少同期陆相火山活动 ,仅见到浅成 -超浅成侵入活动 ,例如江西德兴和西藏玉龙等。斑岩铜矿与陆相火山岩有关的矿床之间具有一定的联系 ,例如有时二者晚期都常发育浊沸石化和硅化 ,常与金等矿化伴生 ,以及常伴随爆破角砾岩和火山口陷落等。环太平洋带、古特提斯带和中亚 -蒙古带为世界斑岩铜矿最发育 ,地质工作最为活跃的地区。中国北部相当于中亚 -蒙古带的一部分 ,东部相当于环太平洋带的一部分 ,西南部相当于特提斯带的一部分 ,集中了许多聚合板块 ,随着洋盆的消减和陆 -陆碰撞的造山作用具有很长的构造 -岩浆 -热液活动的历史(其中包括陆相和海陆交互相火山活动 ) ,故找寻评价斑岩铜矿很有前景。文中重点讨论了东天山、德兴和冈底斯地区同时代的陆相火山活动与斑岩铜矿的关系 ,通过这一讨论 ,为斑岩铜矿的找寻与评价提供了依  相似文献   

10.
The mafic volcanic rocks and hypabyssal rocks in the Chon Dean‐Wang Pong area are possibly the southern extension of the western Loei Volcanic Sub‐belt, Northeast Thailand. They are least‐altered, and might have been formed in Permian–Triassic times. The rocks are commonly porphyritic, with different amounts of plagioclase, clinopyroxene, orthopyroxene, amphibole, Fe–Ti oxide, unknown mafic mineral, and apatite phenocrysts or microphenocrysts, and are uncommonly seriate textured. The groundmass mainly shows an intergranular texture, with occasionally hyalophitic, intersertal and ophitic–subophitic textures. The groundmass constituents have the same minerals as the phenocrysts or microphenocrysts and may contain altered glass. The groundmass plagioclase laths may show a preferred orientation. Chemically, the studied rock samples can be separated into three magmatic groups: Group I, Group II, and Group III. These magmatic groups are different in values for Ti/Zr ratios. The averaged Ti/Zr values for Group I, Group II, and Group III rocks are 83 ± 6, 46 ± 12, and 29 ± 5, respectively. In addition, the Group I rocks have higher P/Zr, but lower Zr/Nb relative to Group II and Group III rocks. The Group I and Group II rocks comprise tholeiitic andesite–basalt and microdiorite–microgabbro, while the Group III rocks are calc‐alkalic andesite and microdiorite. According to the magmatic affinities and the negative Nb anomalies on normal mid‐oceanic ridge basalt (N‐MORB) normalized multi‐element plot, arc‐related lavas are persuasive. The similarity between the studied lavas and the Quaternary lavas from the northern Kyukyu Arc, in terms of chondrite‐normalized rare earth element (REE) patterns and N‐MORB normalized multi‐element patterns, leads to a conclusion that the mafic volcanic rocks and hypabyssal rocks in the Chon Daen–Wang Pong area have been formed in a volcanic arc environment.  相似文献   

11.
Abstract Geochemical analyses of volcanic rocks in the Gamilaroi terrane reveal several phases of arc activity within an intra-oceanic island-arc terrane. Felsic volcanic rocks at the base of the section have rare earth element (REE) and trace element compositions which indicate that they were derived from an island-arc source. Basalts immediately overlying the felsic volcanic rocks have a distinctive geochemical signature with low levels of Ti and Y and high levels of Ni, Cr and Mg. Low concentrations of REE and trace elements relative to mid-ocean-ridge basalts (MORB) indicate that they were also derived from an intra-oceanic island-arc source. Extensive basalts and basaltic andesites among the youngest rocks of the terrane have typically flat to enriched REE and trace element compositions, indicating a transitional arc-back-arc source. The change in basalt compositions indicates that rifting had occurred by this stage in the evolution of the arc. Confirmation of an intra-oceanic setting for this terrane enables a more detailed comparison with similar intra-oceanic rocks in the northern New England orogen. This study of the Gamilaroi terrane is an example of the potential use of geochemical data to identify other ancient intra-oceanic island-arc-rift suites.  相似文献   

12.
The Northern Junggar Basin experienced extensive subduction and a complex tectono-magmatic evolution during the Late Paleozoic,resulting in a heterogeneous distribution of volcanic rocks in the Junggar Basin.In this study,the Carboniferous tectono-magmatic evolution of the northern Luliang arc was described by exploring the petrography and geochemistry of Carboniferous volcanic rocks collected from well Y-2 and outcrop WW' in the northern Luliang Uplift.The distribution,types,and formation ages of these volcanic rocks were characterized and the volcanic sequence in well Y-1 was divided into upper and lower parts according to vertical variations in selected geochemical data.Then the petrogenesis and tectonic settings of different volcanic rocks were evaluated and this was used to infer the tectonomagmatic evolution of the northern Luliang arc during the Carboniferous.The results indicate that:(1) Carboniferous high-K calc-alkali andesite-dacite associations are distributed in the west of the northern Luliang Uplift,and Lower Carboniferous calc-alkali basalt-dacite-rhyolite assemblages are preserved in its east.(2) The intermediateacid volcanic rocks in wells Y-1 and Y-2 were derived from calc-alkali basaltic magma through melting of the juvenile lower crust,and geochemical variations indicate increasing addition of slab melting in a subduction-related arc environment.The bimodal volcanic rocks from outcrop WW' were derived from lithospheric underplating of basaltic magma in an intra-arc extensional setting.(3) The closure of the eastern Keramaili Oceanic basin occurred before the Early Carboniferous,and the tectono-magmatic difference between the east and the west of the northern Luliang Uplift appeared before the Carboniferous period.  相似文献   

13.
Regional gravity data from an eroded Miocene to Pliocene volcanic arc exposed in the Coromandel Peninsula, New Zealand, delineate a circular − 26-mGal, 15-km-diameter gravity anomaly. This anomaly, which has steep gradients on its northern and western margins but shallow gradients elsewhere, correlates with relatively young volcanic and volcaniclastic rocks within a broad topographic depression. Gravity modelling, using an exponentially decreasing density contrast with depth profile, requires very low-density rocks (ca. 2280 kg m 3) in the near-surface to account for the observed anomaly, giving a total depth of ca. 2.8 km for these rocks. The northern and western margins of this body dip steeply inward at 70°, whereas the southern and eastern margins have shallow inward dips (20–30°). The western margin coincides with the regional-scale Mangakino Fault, but the northern margin, recognizable only in the geophysical data (and named here the Ohinemuri Fault), is partially buried under younger volcanic rocks. We interpret these deep and steeply bounded, low-density volcanics in terms of a trapdoor caldera, faulted on its northern and western margins, with its hinge on the southern and eastern margins. Epithermal deposits are spatially associated with the Mangakino and Ohinemuri Faults, suggesting that both structures may have influenced hydrothermal fluid flow. These deposits pre-date caldera fill, indicating that caldera development followed pre-existing regional faults. These results delineate the subsurface geometry of a trapdoor caldera and highlight the role of pre-existing, regional-scale faults in controlling such caldera location and collapse.  相似文献   

14.
Carriacou is small volcanic island located near the southern end of the Lesser Antillean chain. Field relationships, petrography and geochemistry of the Tertiary lavas, outcropping in the southern half of the island, are used to identify the rocks present and to determine their petrogenesis and assess their significance within the island arc.Six main volcanic units are present. From oldest to youngest, these are the clinopyroxene-phyric basalt (CPB) sequence, the amphibole-phyric andesite (APA) sequence, the clinopyroxene-megaphyric basalt (CMB) sequence, the olivine-microphyric basalt (OMB) sequence, the clinopyroxene phyric andesite (CPA) sequence, and the amphibole-megaphyric andesite (AMA) sequence. Volcaniclastic deposits are associated with the APA, CMB, and AMA sequences. The APA sequence is calcalkaline, whereas the other five sequences are tholeiitic.Sr isotope and rare earth element (REE) data suggest that these volcanic rocks were derived from partial melts of garnet-peridotite generated deep within the mantle. The OMB lavas have the highest temperature assemblages of intratelluric minerals and the least evolved chemical characteristics, and are considered to be closest in composition to a parental melt. Phenocryst assemblages and chemical variation suggest that the andesite sequences have been derived from the mafic melts by low pressure fractional crystallization of approximately 20% clinopyroxene and 20% olivine, plus smaller amounts of plagioclase and amphibole. The high concentrations of incompatible and compatible elements and the high87Sr/86Sr ratios may indicate that subduction is slower in the southern part of the arc, and fluids released during slab dehydration rich in Incompatible trace elements, in Radiogenic strontium, and in Silica (IRS), have modified the parental melts.  相似文献   

15.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   

16.
Abstract The Himeji–Yamasaki region in the Inner Zone of southwest Japan is underlain mainly by Late Cretaceous volcanic rocks called the Ikuno Group or the Hiromine and Aioi Groups. A new stratigraphic and geochronological study shows that the volcanic rocks in this area consist of 15 eroded caldera volcanoes between 82 and 65 Ma; they are, in order of decreasing age, the Hiromine, Hoden, Ibo, Okawachi, Seppikosan, Hayashida, Shinokubi, Fukusaki, Kurooyama, Ise, Fukadanigawa, Nagusayama, Matobayama, Yumesaki and Mineyama Formations. These calderas vary in diameter from 1 to 20 km and are bounded by steep unconformities; they coalesce and overlap each other. The individual caldera fills are composed mainly of single voluminous pyroclastic flow deposits, which are often interleaved with debris avalanche deposits and occasionally underlie lacustrine deposits. The intracaldera pyroclastic flow deposits are made up of massive, welded or non‐welded tuff breccia to lapilli tuff, and are characterized by their great thickness. The debris avalanche deposits are ill‐sorted breccia, generated by the collapse of the caldera wall toward the caldera floor during the pyroclastic‐flow eruption. The large calderas that are more than 10 km in diameter contain original values of approximately 100 km3 of intracaldera pyroclastic flow deposits. These large calderas are similar to the well‐known Valles‐type calderas in their dimensions, although it is uncertain whether their caldera floors are coherent plates or incoherent pieces. Conversely, the small calderas have diatreme‐like subsurface structures. The variety of the caldera volcanoes in this area is caused by the difference in the volume of caldera‐forming pyroclastic eruptions, as the large and small calderas coexisted. The caldera‐forming eruption rates in Late Cretaceous southwest Japan, including the studied area, were similar to those in late Cenozoic central Andes and northeast Honshu arc, Japan, but obviously smaller than those of late Cenozoic intracratonic caldera clusters in western North America and the Quaternary extensional volcanic arcs in Taupo, New Zealand. The widespread Late Cretaceous felsic igneous rocks in southwest Japan were generated by a long‐term accumulation of low‐rate granitic magmatism at the eastern margin of the Eurasian Plate.  相似文献   

17.
An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.  相似文献   

18.
Atsushi  Noda 《Island Arc》2005,14(4):687-707
Abstract The focus in the present study is on characterizing spatial patterns of textural and petrological variabilities, and on evaluating mechanisms influencing the textural and petrological components of modern river, beach and shelf sands in a volcanically active back‐arc tectonic setting. Abashiri Bay and the surrounding area in eastern Hokkaido, Japan, has volcanic source land within a back‐arc region associated with subduction of the Pacific Plate beneath the Okhotsk (North American) Plate. A total of 41 river, beach and shelf sands were obtained for grain‐size and modal composition analyses. Multivariate analytical techniques of hierarchical cluster and principal component analyses were performed on the textural and petrological data for investigating relations among quantitative variables. On the basis of grain‐size data, four sedimentary zones were identified: zone I, palimpsest zone; zone II, relict zone; zone III, modern (proteric) zone; zone IV, coastal sedimentary zone. All sands are feldspatholithic and quartz‐deficient. The framework (quartz, feldspar and rock fragment) modal compositions were also classified into four clusters, A–D. The characteristic components of each cluster are as follows: cluster A, felsic volcanic rock fragments; cluster B, andesitic–basaltic volcanic rock fragments; cluster C, mixed or plagioclase; cluster D, sedimentary rock fragments. Almost all sands in western and central Abashiri Bay belong to cluster A, where the original compositions are influenced by Kutcharo pyroclastic flow deposits. Andesitic–basaltic lava and Neogene volcaniclastic and sedimentary rocks have a major influence on the compositions of shelf sands in eastern Abashiri Bay. The modal compositions are basically controlled by the source lithology. Compositional maturity (percentage of quartz to feldspar and rock fragments; Q/FR%) slightly increased, in order, from river (1.2), zone IV (coastal, 1.7), zone II (relict, 2.2), zone I (palimpsest, 3.6), to zone III (modern proteric, 7.0). Greater maturity in the recycled sediments is indicative of weathering under the sea or abrasion by transportation induced by sea‐level fluctuations, waves, or sea currents. Several controlling factors – (i) source lithological; (ii) mineralogical; (iii) climatic; and (iv) geomorphological controls – might still cause low maturity through all sedimentary zones other than the continental margin sands previously reported.  相似文献   

19.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

20.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号