首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
正确地掌握耕地蒸散量,不仅有利于土壤永分管理,而且有利于提高产品的产量和品质。因此,提出了许多预测蒸散量的模型,但还没有在任何地区环境条件下,都能使用的完整模型。  相似文献   

2.
黄河上游流域蒸散量及其影响因子研究   总被引:17,自引:0,他引:17  
李林  张国胜  汪青春  时兴合 《气象》2000,26(2):6-10
利用彭曼公式80年代以来黄河上游流蒸散量,分析了该地区蒸散量、日照时数、气温、空气饱和差等气候因子的变化趋势,并着重研究了诸因子对蒸散量的影响。研究发现,可上游流域蒸散量呈逐年增大趋势,并以每年3.25mm的速度增。而作为主要影响因子的日照时数则以每年3.6小时的速度啬气温同样表现出逐年升高的趋势,其气候倾向率为0.4℃/10年,空气饱和差也以每年0.02的速度递增;因此,可以认为,黄河上游流域日  相似文献   

3.
法国的无线电技术工业公司制造的蒸散量测定装置,适用于农学与农业气象研究。这个装置可以测量通过直接蒸发、植物本身蒸发从地面进入大气的水汽量,它还可以测量渗入土壤的水量(渗水量)。因此可以说,蒸散量测定装置模拟着某一地域地表与大气交换的自然关系。蒸散量测定装置有一个或几个大容量的池子,池子底部有排水管。设置排水管是为了模拟渗水。通过测量池子的重量、掺水量、降水量可以发现,无降水时,由于蒸发和渗水,池  相似文献   

4.
三江平原典型沼泽湿地蒸散量研究   总被引:2,自引:0,他引:2  
利用涡度相关技术对三江平原典型沼泽湿地蒸散量及其影响因子进行研究,结果表明沼泽湿地蒸散量时间变化特征明显。日出后蒸散量逐渐增加,12:00~13:00(北京时间)达到最大值,6~10月各月平均值分别为285.5、257.4、243.0、167.1和65.9W.m-2,各月总蒸散量分别为120.9、101.6、93.1、59.3和25.9mm。与同期降雨量相比,6~9月沼泽湿地水量发生亏缺,亏缺量分别为72.7、3.2、58.8和44.4mm。沼泽湿地蒸散量受环境因子影响强烈。蒸散量与净辐射呈显著线性正相关。蒸散量也随饱和水汽压差的增加而增加,但植物发育成熟后,当饱和水汽压差大于某一阈值(11hPa)时,饱和水汽压差的增加反而抑制了水分蒸散。另外,白天风速增加在一定程度上能够促进水分蒸散。  相似文献   

5.
采用阿克苏地区2006—2015年日蒸散量数据和气象数据,对几种不同的日蒸散量估算方法进行评估与修正。结果表明,修正后的彭曼公式在阿克苏地区的适用性、准确性有所提高,均方根误差值由11.78减小到8.80;BP神经网络比GRNN神经网络估算效果好,前者Nash-Sutcliffe系数为-0.09、RMSE值为3.27,后者Nash-Sutcliffe系数为-0.44、RMSE值为3.34。研究成果可为极端干旱区的棉花等作物节水种植提供参考。  相似文献   

6.
一、前言通常人们把有植物覆盖下的蒸发蒸腾称作蒸散或可能蒸散。蒸散就是指“在指定时间内单位面积上通过植物蒸腾和土壤面蒸发所散失的水分总量。”蒸散量在干旱气候研究、水资源评价、干湿评定、水利建设以及在农田灌溉管理、作物估产等项目的研究和实际应  相似文献   

7.
向可宗 《气象》1981,7(11):24-24
作物叶茎蒸腾与株间土壤蒸发之和叫蒸散。作物各生育期的蒸散量直接反映了作物的需水情况,对于研究农田水分平衡、确定旱涝指标以及农业气候区划等都有重要意义。 五十年代初,彭曼根据能量平衡方程,导出一个蒸散量计算公式,但由于所涉及的物理量多而且难于精确测定,故其应用受到限制。布雷特莱—泰勒尔在彭曼公式的基础上,根据统计分析,略去了土壤热通量等对蒸散影响很小的项,建立了如下的计算模式;  相似文献   

8.
利用青藏高原不同下垫面5个观测站点(阿里站、慕士塔格站和珠峰站下垫面以荒漠、碎石和稀疏短草为主,那曲站和阿柔站下垫面分别为高寒草甸和高寒草原)涡动相关仪观测的2013年热通量资料,计算不同下垫面的实际蒸散发量,并对不同下垫面的实际日蒸散发量与气象要素(净辐射、土壤湿度、地温、气温、风速、饱和水汽压差)进行Spearma...  相似文献   

9.
冬小麦农田日蒸散量的计算   总被引:10,自引:0,他引:10  
本文从小气候观测资料着手,采用彭曼法、能量平衡法、波温比法和空气动力学等方法,对处于抽穗至乳熟期的冬小麦农田日蒸散量做了尝试性计算。着重考虑了彭曼公式的修正,并以水量平衡法为标准,对以上各方法的精度做了评价与误差分析。结果表明,订正后的彭曼公式可较为准确地计算各种能量、水分供应条件下有作物覆盖农田的日蒸散量,其它方法则存在较明显的不确定性误差。  相似文献   

10.
引言遥感提供了计算大面积蒸散量的可能性,目前,利用气象参数计算蒸散量,这些参数既不说明种有不同作物和裸露土壤表面的空间分布,也不说明各种农田的水分状况。遥感表面温度可以是从手持辐射温度计确定几平方厘米分辨率的表面温度到用某些卫星传感装置确定几平方公里分辨率的表面温  相似文献   

11.
华北地区玉米田实际蒸散量的计算   总被引:6,自引:2,他引:6       下载免费PDF全文
以简化农田实际蒸散的计算过程为目的,利用1999年河北定兴县中国气象科学研究院农业气象试验基地的玉米田0~300 cm土壤湿度和气象要素的实测资料以及华北地区5个站1991~1995年0~50 cm土壤湿度和气象资料,探讨由简化参考蒸散模式计算玉米田实际蒸散的可能性;对比了Priestley-Taylor模式和FAO(1998)Penman-Menteith模式的计算结果,以农田试验资料为基础,采用叶面积系数和平均土壤相对湿度为因子,建立了实际蒸散的计算模式。并以华北地区8个站1999~2000年0~50 cm土壤湿度和气象资料进行验证,平均误差一般为10%~15%.  相似文献   

12.
以黄淮海为例研究农田实际蒸散量   总被引:19,自引:0,他引:19  
王菱  倪建华 《气象学报》2001,59(6):784-794
以田间实验资料为基础 ,建立农田蒸散量和土壤相对含水量与潜在蒸散的函数关系。利用这种函数关系 ,计算黄淮海地区 ,在自然条件下农田蒸散量的变化。结果表明 ,黄淮海农田蒸散量的年变化呈双峰型 ,第一峰值出现在冬小麦抽穗开花期 ,第二高峰出现在夏玉米抽雄开花期。农田蒸散的区域分布趋势与自然降水分布相一致 ,在量值上约等于降水量的 84%  相似文献   

13.
利用区域气候模式RIEMS产品分析日蒸散量及其影响   总被引:1,自引:0,他引:1  
利用区域气候模式RIEMS输出的各种气象参数,采用了BEF等4种不同方法计算了沂沭河上游流域的潜在蒸散量,并与该流域6个气象站实测蒸发数据计算的陆面潜在蒸散量进行了比较。结果表明,根据平均偏差、平均绝对偏差、均方根差和相关系数指标的综合判断,该4种方法的估测精度从高到低依次为双线性曲面回归经验函数法(BEF)、Hargreaves-Samani(Harg)法、Pristley-Tayler(P-T)法和Penman-Monteith(P-M)法。在时间序列上,4种方法计算的逐日蒸散量与观测值呈相同的变化趋势,但计算值在蒸散发最强、最弱和降水最多、气温最高的7-9月有较大差异。BEF法估测的精度最高,与观测值最接近,Harg法、P-M法和P-T法都有明显的偏高现象。BEF法只需要较少的参数就能得到较高的估测精度,因此可作为利用区域气候模式RIEMS产品计算沂沭河流域蒸散量的首选方法,进而为RIEMS模式中耦合的陆面水文过程模型TOPX提供满足精度要求的日蒸散量驱动参数。  相似文献   

14.
用Priestley-Taylor模式计算棉田实际蒸散量的研究   总被引:5,自引:1,他引:5       下载免费PDF全文
在农田蒸散试验资料的基础上,综合考虑影响棉田实际蒸散的气象条件,棉花生物学特性和土壤水分等因素,利用Priestley-Taylor模式、棉花叶面积指数和相对有效土壤湿度建立了棉田实际蒸散量的计算模式。该模式仅需常规气象和农业气象资料,具有较高的精度,便于在干旱区推广使用。  相似文献   

15.
在湿润条件下,用能量平衡法确定植物群体的蒸散量能够得出满意的结果,但在很干燥的条件下或在能量平流较强的湿润条件下,这种方法可能就完全不会那么准确了。在前一种条件下,误差分析表明:只有在鲍恩比的相对误差很小时,蒸散量的相对误差才很小。然而,在干燥条件下,由于蒸散量的数值很小,所以它的绝对误差总是相当小的。分析干湿球温度梯度的误差对鲍恩比的影响说明:在很干燥的条件下,观测干湿球温度梯度所需的精度比绝大多数鲍恩比观测装置预期能达到的精度要高一个数量级。在后一种情况下,实验结果表明:被认为是在边界层内观测到的鲍恩比在白天给出太小的蒸散值,在夜间会给出与水汽压力梯度的方向不一致的潜热通量方向。这就提出了一个问题:当空气通过两种表面之间的边界时,把大气特性调整到新的下垫面的特性到底意味着什么?  相似文献   

16.
基于修正的Penman-Monteith(P-M)模型,利用1980~2020年黄河源区的气象台站观测数据和陆-气间水热交换观测试验数据,计算出该区域的陆面参考蒸散量,分析了黄河源区蒸散量的时空演变特征,探讨了影响黄河源区蒸散量变化的原因。结果表明:(1)修正的P-M模型能较准确地估算黄河源区的参考蒸散量,与实际观测的相关系数在0.85以上。(2)黄河源区的蒸散量总体呈上升趋势,但在20世纪80年代中期和90年代中期均呈显著减少趋势;近年来,中部和西部地区的蒸散量呈减少趋势,而东部地区的蒸散量呈增加趋势。(3)黄河源区年蒸散量呈自东向西减小的分布特征,东、中、西部地区分别为473.5~516.0mm、437.6~473.5mm和386.3~437.6mm;四季蒸散量差异明显,夏季最大,春季和秋季次之,冬季最小。(4)黄河源区蒸散量随温度、风速和日照时数的增加而增大,随相对湿度和降水量的增大而减小。  相似文献   

17.
在1987~1988年乌兰乌苏站的试验资料基础上,综合考虑了影响玉米田蒸散的气象,作物生物学特性和土壤水分等因素,采用可能蒸散,叶面积指数以及相对有效土壤湿度建立了玉米田实际蒸散量的计算模式。与实测值相比,计算效果较好。  相似文献   

18.
用Priestley—Taylor公式估算作物农田蒸散量的研究   总被引:2,自引:0,他引:2  
刘绍民  刘志辉 《高原气象》1997,16(2):191-196
利用田间试验资料,综合考虑了影响农田蒸散的气象,作物和土壤因素,并以Priestley-Taylor公式为基础,建立了不同作物(棉花、玉米冬小麦)的农田散估算模型。该模型仅需常规气象和农业气象资料,计算简便,具有一定的实用价值。  相似文献   

19.
本文从田间实验资料入手,逐一分析了土壤、植物、大气因子对蒸散计算的影响。通过对彭曼-蒙蒂斯(Penman-Monteith)方法的修正和简化,确定了计算潜在蒸散和作物系数的模式。经验证,说明所建模式的效果是好的。从而提供了一种简单实用的作物需水量和实际蒸散量的计算方法,并对潜在蒸散和作物系数等概念提出了新的见解。  相似文献   

20.
本文从田间实验资料入手,逐一分析了土壤、植物、大气因子对蒸散计算的影响。通过对彭曼-蒙蒂斯(Penman-Monteith)方法的修正和简化,确定了计算潜在蒸散和作物系数的模式。经验证,说明所建模式的效果是好的。从而提供了一种简单实用的作物需水量和实际蒸散量的计算方法,并对潜在蒸散和作物系数等概念提出了新的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号