首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Earth》2009,92(1-4):27-76
In this study we reconstruct the evolution of the northern New England passive margin whose development has been influenced by Pleistocene glaciations. The morphology of the northern New England shelf is rather unique consisting of a inner lowland, the Gulf of Maine, with an average depth of 150 m and an area of 90,700 km2 and Georges Bank, a high whose crest is less than 40 m deep and has an area of 27,000 km2. The bank's northern slope, facing the Gulf of Maine, has a maximum relief of 377 m. On the seaward side of Georges Bank is the 2000 m high continental slope deeply cut by canyons. Two channels, Northeast and Great South Channels, east and west of Georges Bank, provide passageways from the Gulf of Maine to the open sea. This morphology was acquired by a combination of Tertiary fluvial erosion, Pleistocene glacial erosion/deposition and Pleistocene/Holocene marine processes. Fluvial/glacial erosion in the Gulf of Maine was so extensive as to expose basement, thus making it possible to map the various terranes making up this foundation. These terranes include the pre-Carboniferous Avalon and Meguma units, a Carboniferous–Permian rift basin formed by the oblique continental collision during the closure of the Paleozoic proto-Atlantic and a Late Triassic–Early Jurassic rift system created during the opening of the present Atlantic. Basement in the Gulf of Maine remained above sea level from the opening of the Atlantic 190 Ma (Early Jurassic) to the Eocene 55 Ma. That the Gulf of Maine remained a high for so long may have been due to igneous activity along the northwest-trending Boston–Ottawa Lineation extending from the vicinity of the St. Lawrence River, Canada to Gulf of Maine from Late Triassic to Early Cretaceous. The northwest-trending New England Seamounts south of Georges Bank may represent a seaward extension of this lineation. On Georges Bank, rising hundreds of meters above the Gulf of Maine, the basement exposed in the gulf is mantled by sediments thousands of meters thick. Included in these sediments are Early Jurassic- to earliest Cretaceous reefs along the continental slope and carbonates north of the reefs grading landward into continental sediments, Cretaceous–Cenozoic continental/marine terrigenous sediments and Pleistocene glacial deposits. The continental slope on the seaward flank of Georges Bank has a complex history of early to mid Mesozoic carbonate accretion, mid to late Mesozoic and Cenozoic calcareous/terrigenous sediments and canyon erosion, burial and exhumation going back to Early Cretaceous.  相似文献   

2.
We present new compositional data on a suite of historic lava flows from the Reykjanes Peninsula, Iceland. They were erupted over a short time period between c. 940 and c. 1340 ad and provide a snap-shot view of melt generation and evolution processes beneath this onshore, 65 km long, ridge segment. The lavas are tholeiitic basalts (MgO 6.5–9.2 wt%) and sparsely (≪5%) olivine and/or plagioclase phyric (±trace clinopyroxene). Individual eruptive events show remarkable compositional homogeneity. Despite a limited variation in Sr–Nd isotope compositions, high-precision double-spike Pb isotope data show tight coherent arrays that, together with correlations with incompatible trace element ratios, indicate control by binary mixing processes. Poor correlations with elemental abundances require that this mixing took place prior to extensive fractional crystallisation. Olivines in the historic lavas have light δ18O values (+4.2 to +4.3‰), which is likely to be a feature of the enriched mantle source to Reykjanes Peninsula lavas. High precision Pb isotope analyses of other post-glacial Reykjanes Peninsula lavas show significant variability in 207Pb/204Pb and 208Pb/204Pb at lower 206Pb/204Pb values than in the historic lavas. This variation demonstrates that at least three compositionally distinct components within the mantle are required to explain the Pb isotope variations within the Reykjanes Peninsula as a whole. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Recent sedimentary history of natural environmental change and anthropogenic influence in an ephemeral river catchment has been reconstructed using selected major and trace elements, element ratios, and their different geochemical phases (Tessier sequential extraction methods), pollen, and grain size combined with 210Pb- and 137Cs-dating method in marsh sedimentary cores. Attempts were made to use selected element ratios with different geochemical phases—residual phase of Ti, Al, V, Cr, Ni, Rb, K, Sr, and Ba; mobile Sr and Ba—combined with 210Pb- and 137Cs-chronology to interpret certain time information of environmental changes saved within the marsh sediments. Results indicate that there were two marked humid periods during 1850–1860 ad and 1890–1920 ad, and sand storm activities prevailed during 1920–1930 ad. After about 1900 ad, soil erosion has increased with the extensive agricultural activities in the Huolin River catchments, and further intensified after 1950s. After 1980, soil erosion has become even more intense, which is consistent with the reinforcement of human activities, the drastic loss of vegetation cover in the upstream lands, especially, the exploitation of the open cast coalmine in the upstream of Huolin River at that time. Influenced by the inundation of the Huolin River, the heavy metal pollution historical trends in Xianghai marsh wetland could be roughly divided into three periods by analysis of sediment enrichment factor (KSEF) and the index of geoaccumulation (I geo):1760–1880 ad, 1880–1980 ad, and 1980–now. Human activities accelerate the inputs of heavy metal, which leads to degradation of the marsh. This study also investigated on source of marsh sediments (by Ti/Al), redox condition [by V/Cr and V/(V + Ni)], and salinization indicators (by Sr/Ba and Rb/K). The results demonstrate that sources of sediments and redox conditions were partly similar for both riparian and depressional marshes. Besides, some differences in degree of salinization between two types of marsh were also identified, especially after 1880.  相似文献   

4.
Investigation of biogeochemistry and amino acids on a 30-m-long core from Mansar Lake has thrown light on palaeoclimate variability during the Holocene period. The C/N ratio between 6 and 10 with some deviations and δ13C mostly between −20 and −22‰ in the shallow core, as well as a C/N ratio greater than 13 reaching from 19 to 20 and correspondingly lower δ13C of –28‰ in the deeper core suggest an aquatic source of carbon in the former and a cellulose-rich land plant source in the latter. This is supported by the abrupt increase in organic carbon content in the deeper core compared to the shallow core, which indicates a hot and wet climatic regime during the early Holocene and dry and cold during the late Holocene period. The amino acid data AA-C/C% and AA-N/N% are higher in shallow sediments compared to deeper sediments, indicating an aquatic plant source in the shallow core and greater supply of land plant sources in the deeper core. The lower percentage of the non-protein amino acids β-alanine (ALA) and γ-amino-butyric acid in the shallow core compared to the deeper core indicates different sources of organic matter in the lake basin. The higher amino acid ratio Asp/β-Ala (16.99 av.) and Glu/γ-Aba (18.18 av.) in the shallow core and lower ratios (10.32 and 12.41 av.) in the deeper core, and Asp/Glu (1.52 av.) and β-Ala/γ-Aba (1.61 av.) ratios in the former, which are potential indicators of the nature of the organic matter, are higher in the shallow core relative to the deeper core (1.33 and 1.23 av.), indicating relative biodegradation of organic matter in deeper sediments. It has been observed that the organic matter associated with the dry season is relatively less biodegraded, as evidenced from their higher ratios, and is more biodegraded in the wet season as their ratios are lower in the river sediments. In the absence of a bacterial contribution of organic matter from the soil source in this lake, since Mansar Lake is a non-drainage type, it is envisaged that the climatic variation may be responsible for biodegradation in the deeper core sediments. Therefore, the C/N ratio and δ13C values supported by amino acid data, the latter being significant in revealing primary productivity and a terrestrial source of organic matter, suggest a hot and wet climatic regime during the early Holocene (ca. 7580 bp) and a dry and cold in the late Holocene period (ca. 4050 bp).  相似文献   

5.
Extensive nebkha areas develop mainly under the control of aeolian processes, and their sediments record information on regional environmental changes during different periods. Such areas have developed on the dry riverbeds and deserted arable lands of China’s Alaxa Plateau, Taklimakan, and Kumutage deserts. In this paper, we studied nebkhas that had developed in the Heicheng–Juyan region to determine their CaCO3 contents, particle size distributions, and creation dates. Extensive human activities have occurred in this region since at least in the late Tang Dynasty (618–907 ad). Although historical records show that most of the region’s rivers dried up around 1372, surface water persisted in some areas until the early Qing Dynasty (1644–1911 ad). After the 1600s, extensive nebkhas began to develop due to drying of the region’s rivers. The early stages of nebkha development were controlled by both the sediment supply and the regional wind regime, whereas late stages were controlled primarily by variations in wind activity. In the Alaxa Plateau, it took about 100 years for arable lands and riverbeds to evolve into gobi deserts, and during this time, several phases occurred with different levels of wind activity. The land degradation processes in this region are mainly controlled by surface water resources, and the impact of human activities such as reclamation on land degradation appear to have been overestimated in previous studies.  相似文献   

6.
Bat guano cores have been used as a source of palaeoenvironmental information to aid in the reconstruction of past climates and vegetation. We collected a 104‐cm‐long (43 cm compacted) guano core from Fern Cave, Alabama, USA, that provided a c. 6000‐year record of guano accumulation. Pollen, nutrients (C, N, P) and stable isotopes (δ13C, δ15N) were measured on the guano core with the objective of reconstructing the environmental history of the area from the mid‐Holocene to present. Our data indicate that bats have utilized Fern Cave for at least 6000 years and that Woodland Indians also utilized the cave for a short period. A 3‐cm charcoal layer was dated to 2720±30 cal. a BP and inferred to be Woodland Indian in origin from microscopic inspection and thickness. Pollen and geochemical data showed that bat diets changed in the late Holocene possibly linked to food supply and climate changes. These results demonstrate that guano cores are a useful tool of palaeoenvironmental reconstruction when other forms of palaeorecords do not exist and can add to local archaeological information.  相似文献   

7.
Under changing climatic conditions permafrost peatlands can play an important role in the global carbon budget through permafrost carbon feedbacks and shifts in carbon assimilation. To better predict future dynamics in these ecosystems an increased understanding of their Holocene carbon and permafrost history is needed. In Tavvavuoma, northern Sweden, we have performed detailed analyses of vegetation succession and geochemical properties at six permafrost peatland sites. Peatland initiation took place around 10 000 to 9600 cal. a BP, soon after retreat of the Fennoscandian Ice Sheet, and the peatlands have remained permafrost‐free fens throughout most of the Holocene. At the four sites that showed a continuous accumulation record during the late Holocene radiocarbon dating of the shift from wet fen to dry bog vegetation, characteristic of the present permafrost peatland surface, suggests that permafrost developed at around 600–100 cal. a BP. At the other two sites peat accumulation was halted during the late Holocene, possibly due to abrasion, making it more difficult to imply the timing of permafrost aggradation. However also at these sites there are no indications of permafrost inception prior to the Little Ice Age. The mean long‐term Holocene carbon accumulation rate at all six sites was 12.3±2.4 gC m−2 a−1 (±SD), and the mean soil organic carbon storage was 114±27 kg m−2.  相似文献   

8.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

9.
Approximately 13 km south of Gulf Shores, Alabama (United States), divers found in situ baldcypress (Taxodium distichum) stumps 18 m below the ocean surface. These trees could have only lived when sea level fell during the Pleistocene subaerially exposing the tectonically stable continental shelf. Here we investigate the geophysical properties along with microfossil and stratigraphical analyses of sediment cores to understand the factors that lead to this wood’s preservation. The stumps are exposed in an elongated depression (~100 m long, ~1 m deep) nested in a trough of the northwest–southeast trending Holocene sand ridges and troughs with 2–5 m vertical relief and ~0.5 km wavelength. Radiocarbon ages of the wood were infinite thus optically stimulated luminescence (OSL) dating was used to constrain the site’s age. Below the Holocene sands (~0.1–4 m thick), separated by a regional erosional unconformity, are Late Pleistocene mud-peat (72±8 ka OSL), mud-sand (63±5, 73±6 ka OSL), and palaeosol (56±5 ka OSL) facies that grade laterally from west to east, respectively. Foraminiferal analysis reveals the location of the terrestrial-marine transitional layer above the Pleistocene facies in an interbedded sand and mud facies (3940±30 (1σ) 14C a BP), which is part of a lower shoreface or marine-dominated estuarine environment. The occurrence of palaeosol and swamp facies of broadly similar ages and elevation suggests the glacial landscape possessed topographic relief that allowed wood, mud and peats to be preserved for ~50 ka of subaerial exposure before transitioning to the modern marine environment. We hypothesize that rapid sea-level rise occurring ~60 or ~40 ka ago provided opportunities for local flood-plain aggradation to bury the swamp thus preserving the stumps and that other sites may exist in the northern Gulf of Mexico shelf.  相似文献   

10.
《Quaternary Science Reviews》2007,26(1-2):115-129
The Gulf of California is a marginal seaway under the influence of a monsoon climate that produces cool, dry winters and warm, humid summers. Winds, tidal mixing and coastal-trapped waves forced by climate and the Pacific Ocean control nutrient advection and primary productivity (PP). Strong northwest winds from the subtropical East Pacific High Pressure system begin in November and last until April and drive coastal upwelling along the mainland margin, especially in the central and southern Gulf. In the northern Gulf, particularly around the midrift island, tidal mixing and turbulence occurs year round, advecting nutrients into the mixed layer and high productivity. During summer and early fall months, winds are variable, of less intensity and mainly blow cross-basin except in the most northern Gulf. Summer PP is generally low in the central and southern Gulf except along the mainland where coastal-trapped waves associated with tropical surges and hurricanes generate mixing over the continental shelf. Mesoscale eddies or gyres often associated with jets and filaments extend to depths of 1000 m and transport nutrient-enriched upwelled waters and plankton detritus across the Gulf. The largest and most persistent gyres rotate in an anti-cyclonic direction (east to west) and are a principal source of the plankton export to the peninsula margin.Two major biogenic sediment patterns are present in core-top sediments. Hemipelagic biosiliceous-rich muds are accumulating beneath upwelling areas of high productivity in the central Gulf and along the mainland margin. Calcium carbonate- and organic carbon-rich (OC) sediments are concentrated along the peninsula margin, generally beneath lower productivity waters with the highest OC content in areas with the lowest productivity. The high, uniform biosiliceous content in Guaymas basin, extending southward into Carmen basin reflects the redistribution by mesoscale gyres of phytoplankon debris produced in mainland coastal upwelling and tidally forced areas around the midrift islands.Holocene biogenic patterns are similar to the present day with the major difference in rates of accumulation. Phytoplankton production prior to about 8200 yr BP was significantly higher in the central and southern Gulf, decreased though the mid-Holocene and has been reasonably steady for the past 2500 yr. The strong north–south and east–west gradients in present-day phytoplankton productivity patterns are also reflected in the Holocene sediment record. A series of depositional cycles occur in the biogenic record with the strongest peaks of variability at about 150 (144±18), 200 (198±5) and 350 (350±40) yrs. Longer periodicities are present prior to 3200 yr BP but the 350 yr cycle dominates in the late Holocene where it is best expressed as productivity/dissolution cycles in the carbonate record.  相似文献   

11.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   

12.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

13.
Physical properties, grain size, bulk mineralogy, elemental geochemistry and magnetic parameters of three sediment piston cores recovered in the Laurentian Channel from its head to its mouth were investigated to reconstruct changes in detrital sediment provenance and transport related to climate variability since the last deglaciation. The comparison of the detrital proxies indicates the succession of two sedimentary regimes in the Estuary and Gulf of St. Lawrence (EGSL) during the Holocene, which are associated with the melting history of the Laurentide Ice Sheet (LIS) and relative sea‐level changes. During the early Holocene (10–8.5 cal. ka BP), high sedimentation rates together with mineralogical, geochemical and magnetic signatures indicate that sedimentation in the EGSL was mainly controlled by meltwater discharges from the local retreat of the southeastern margin of the LIS on the Canadian Shield. At this time, sediment‐laden meltwater plumes caused the accumulation of fine‐grained sediments in the ice‐distal zones. Since the mid‐Holocene, postglacial movements of the continental crust, related to the withdrawal of the LIS (c. 6 cal. ka BP), have triggered significant variations in relative sea level (RSL) in the EGSL. The significant correlation between the RSL curves and the mineralogical, geochemical, magnetic and grain‐size data suggest that the RSL was the dominant force acting on the sedimentary dynamics of the EGSL during the mid‐to‐late Holocene. Beyond 6 cal. ka BP, characteristic mineralogical, geochemical, magnetic signatures and diffuse spectral reflectance data suggest that the Canadian Maritime Provinces and western Newfoundland coast are the primary sources for detrital sediments in the Gulf of St. Lawrence, with the Canadian Shield acting as a secondary source. Conversely, in the lower St. Lawrence Estuary, detrital sediments are mainly supplied by the Canadian Shield province. Finally, our results suggest that the modern sedimentation regime in the EGSL was established during the mid‐Holocene.  相似文献   

14.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

15.
High-resolution sedimentological and rock magnetic analyses from sediment cores collected in the Seine estuary record changes in coastal sedimentary dynamics linked to climatic variations during the late Holocene. Using AMS 14C and paleomagnetic data we present a first attempt in developing a reliable age model on macrotidal estuarine archives, with a decadal resolution. Correlations between sedimentary successions from the outer Seine estuary document the main sedimentary infilling phases of the system during the last 3000 years. Between 3000 and 1150 cal. BP sedimentary patterns reveal that sequence deposition and preservation are predominantly controlled by marine and tidal hydrodynamics while severe storm events are recorded at ca. 2700 and 1250 cal. BP in the outermost estuary. Conversely, the Medieval Warm Period (MWP; 900–1200 AD) is characterized by a drastic waning of the influence of marine hydrodynamics on sediment preservation. Pronounced episodes of Seine river floods indicate a much stronger impact of continental inputs on sedimentary patterns during this period. The onset of the Little Ice Age marks a diminishing influence of continental inputs while tidal and open marine hydrodynamics again exerted a primary control on the sedimentary evolution of the system during 1200–2003 AD. Coastal sedimentary dynamics as preserved within sedimentary successions appear to have been largely influenced by changes in storminess during the last 3000 years. We have matched the preservation of MWP Seine river floods, as revealed by sedimentological and rock magnetic proxy data, to a prolonged interval of weakened storminess in Normandy permitting the preservation of estuarine flood deposits within a context of reduced coastal erosion in northern Europe. The preservation of sedimentary successions in the Seine estuary is therefore maximal when climate conditions resembled those of the preferred low phase of the NAO on multidecadal timescales such as during 800–1200 AD (MWP). In contrast, increased removal and transport of estuarine sediments occur when winter storm activity greatly intensified over northwestern France. We report four prominent centennial-scale periods of stronger storminess, occurring with a pacing of ~1500 years, which are likely to be related to the last four Bond's Holocene cold events. Our results documenting a close link between coastal sedimentary dynamics, millennial-scale variations in Holocene climate and North Atlantic atmospheric circulation are fairly consistent with other records from Scandinavia, central Greenland and southern Europe.  相似文献   

16.
Shells of the helicid Cepaea nemoralis were studied using taphonomic, isotopic and morphometric measurements to estimate late glacial–Holocene (~ 12.1–6.3 cal ka BP) environmental conditions in northern Spain. Higher taphonomic alteration among Holocene shells suggests lower sedimentation rates or higher shell-destruction rates than during glacial conditions. Shells preserved the aragonitic composition despite differing degree of skeleton damage. Shell δ13C values were ? 10.3 ± 1.1‰, ? 8.2 ± 2.3‰, and ? 7.3 ± 1.6‰ for modern, Holocene and late-glacial individuals, respectively. Higher δ13C values during the late-glacial and some Holocene periods imply higher water stress of C3 plants and/or higher limestone contribution than today. Intrashell δ13C values were higher during juvenile stages suggesting higher limestone ingestion to promote shell growth. Shell δ18O values were ? 1.1 ± 0.7‰, ? 0.9 ± 0.8‰ and ? 0.1 ± 0.7‰ for modern, Holocene and late-glacial specimens, respectively. A snail flux-balance model suggests that during ~ 12.1 ? 10.9 cal ka BP conditions were drier and became wetter at ~ 8.4 ? 6.3 cal ka BP and today. Intrashell δ18O profiles reveal that glacial individuals experienced more extreme seasonality than interglacial shells, despite possible larger hibernation periods. Shell size correlated positively with δ18O values, suggesting that growth rates and ultimate adult size of C. nemoralis may respond to climate fluctuation in northern Spain.  相似文献   

17.
Laboratory culture experiments have been conducted to evaluate the effects of light intensity on the growth of Cryptomonas sp. (Cryptophyceae) and the discrepancy in absorption of iron and phosphorus under different light conditions. Results show that there is an exponential correlation between algal growth rate and light intensity. The saturating and semi-saturating light values for Cryptomonas sp. cells are 150 and 47 μmol photons m−2 s−1, respectively. More uptake of Fe, P, and other trace elements such as Zn, Mn, Co, and Mo is observed in the low light cultures, although the algal growth rates are slow. The growth rate at 10 μmol photons m−2 s−1 is only 10% of that at 150 μmol photons m−2 s−1, whereas Fe and P uptake increases by 150 and 100%, respectively. These results suggest potential implications of differentiation in absorption of iron and phosphorus at different light intensities for the occurrence of harmful algal blooms (HABs). The mechanisms of light intensity regulating nutrient uptake as well as the occurrence of HABs are also discussed.  相似文献   

18.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

19.
Concentrations and rates of uptake of dissolved organic nitrogen (DON, free amino acids, and urea) and inorganic nitrogen (DIN, nitrate, and ammonium) were measured along two transects in the Gulf of Riga, a sub-basin of the Baltic Sea, during May and July 1996. Concentrations of total dissolved nitrogen (TDN) were 23±3 μg-at N 1−1 in the northern region (mouth) and 41±5 μg-at N 1−1 in the southern region (head) of the Gulf. Rates of nitrogen uptake, determined with15N-labeled substrates, reflected differences in TDN concentration between the regions. In May, uptake of DIN+DON measured 0.17 and 0.43 μg-at N 1−1 h−1 in the northern and southern parts of the Gulf, respectively. In July, DIN+DON uptake measured 0.38 and 0.68 μg-at N 1−1 h−1 in the north and south, respectively. Most of the variability in total nitrogen flux between the northern and southern regions was due to heterogeneity of DON utilization. Uptake of urea and dissolved free amino acid were up to 6 and 3 times greater in the south compared to the north. As evidenced by size-fractionation, plankton size structure appeared to play a role in the uptake of DON. The community in the southern part was largely composed of cells <5 μm, while up to 67% of the community in the northern part was composed of cells >5 μm. Our results indicate that DON was a major source of nitrogen to phytoplankton, particularly in the southern part of the Gulf.  相似文献   

20.
The 18O and 2H (HDO) compositions are summarized for sampled springs (n = 81) within the Elwha watershed (≈692 km2) on the northern Olympic Peninsula. Samples, collected during 2001–2009, of springs (n = 158), precipitation (n = 520), streams (n = 176), and firn (n = 3) assisted the determinations for meteoric composition of recharge waters. The local mean water line (LMWL) is defined as δ2H = 8.2δ18O − 9.3 for the watershed. Recharge history is surmised from groundwater ages ranging from 5 ± 3 years (apparent 85Kr) to 9,490 ± 420 14C cal years BP. About 56% of the springs were recharged over the last 1,000 years while 13% of springs were recharged over 5,000 years ago. Spring HDO values fluctuate between −11.8 to −15.6‰ δ18O and −90.9 to −119.4‰ δ2H. Deuterium excess values predominate around 4–6‰. The HDO proxy records from springs suggest a pronounced paleoclimate shift in air masses near 5,000 year BP on the Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号