首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some seismic refraction observations undertaken during the IGY are reported here together with a summary of other refraction studies carried out within the Transkei Basin, the Mozambique Ridge and the South African continental shelf area.A 2.5 km section of Cretaceous and younger rocks is associated with profiles observed on the continental shelf; directly below this group are rocks with velocities in the range 4.0–5.5 km s-1, probably representatives of the Karroo and Cape supergroups. The basement material velocity variations were from 5.3 to 6.5 with an average of 5.9 km s-1, and is correlated with granite or Malmesbury Formation plus granite. This crustal structure is similar to that found on the eastern continental shelf of southern South America.The profiles in the Transkei Basin show a thick layer of sediment with velocity range 1.50 to 3.50 km s-1, underlain by a refracting layer in which the average velocity is 4.5 km s-1. The velocity of 6.6 km s-1 obtained for the oceanic layer is similar to the velocities of the crustal layer measured in the Argentine Basin. The mantle velocity (8.1 km s-1) is consistent with the average mantle velocity for the Indian Ocean but significantly lower than the Pacific Ocean average of 8.20 km s-1. The depth to Moho is about 12.0 km and the crustal section is typical oceanic. A plate tectonic model of the early opening of the South Atlantic is used to describe the evolution of the Transkei Basin.On the Mozambique Ridge the thin sediments (0.7 km) are underlain by rocks with velocities averaging 5.6 km s-1. This is more than 1.0 km s-1 faster than the velocity for layer 2 from the Transkei Basin and the Agulhas Plateau, indicating rocks of a younger age or of a different type. Moreover the crustal section of the Ridge has a thickness in excess of 22 km and is in isostatic equilibrium when compared with the adjacent Transkei Basin and Agulhas Plateau. DSDP site 249, situated on the Ridge, penetrated basalt at a depth of 0.4 km. Whether this is continental or oceanic basalt is not known; when this site 249 basalt was compared to the cored basalts of the adjacent Mozambique Basin, inconclusive results were obtained. The essential constitution of the Mozambique Ridge remains an enigma, but solution of this problem is vital for the proper understanding of the Mesozoic history of this oceanic region.  相似文献   

2.
Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13° N latitude across the Bay of Bengal was made. The transect is from the continental shelf off Madras to the continental slope off Andaman Island in water depths of 525 m to 3350 m and across the Western Basin (bounded by foot of the continental slope of Madras and 85° E Ridge), the 85° E Ridge, the Central Basin (between the 85° E Ridge and the Ninetyeast Ridge), the Ninetyeast Ridge and the Sunda Arc. The study revealed eight seismic sequences, H1 to H8 of parallel continuous to discontinuous reflectors. Considering especially depth to the horizons, nature of reflection and on comparison with the published seismic reflection results of Currayet al. (1982), the early Eocene (P) and Miocene (M) unconformities and the base of the Quaternary sediments (Q) are identified on the seismic section. Marked changes in velocities also occur at their boundaries.In the Western Basin the acoustic basement deepening landward is inferred as a crystalline basement overlain by about 6.7 km of sediment. In the Central Basin possibly thicker sediments than in the Western Basin are estimated. The sediments in the Sunda Arc area are relatively thick and appears to have no distinct horizons. But the entire sedimentary section appears to be consisting of folded and possibly faulted layers.The comparatively broader wavelength magnetic anomalies of the Central Basin also indicate deeper depth of their origin. Very prominent double humped feature of the 85° E Ridge and broad basement swell of the Ninetyeast Ridge are buried under about 2.8 km thick sediments except over the prominent basement high near 92° E longitude. The positive structural relief of the buried 85° E Ridge in the area is reflected in magnetic signature of about 450 nT amplitude. Flexural bulge of the 85° E Ridge and subsidence of the Ninetyeast Ridge about 24 cm my–1 rate since early Eocene period have been inferred from the seismic sequence analysis.  相似文献   

3.
Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle—Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km.Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit.Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40–5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6–5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time.  相似文献   

4.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

5.
Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.  相似文献   

6.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

7.
In this study, we construct a 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. We use the multiple filter technique to calculate the group velocity dispersion curves of fundamental mode Rayleigh and Love waves with periods from 14 s to 120 s for earthquakes occurred around the Southeast Asia. We divide the study region (80° E–140° E, 16° S–32° N) into 3° × 3° blocks and use the constrained block inversion method to get the regionalized dispersion curve for each block. At some chosen periods, we put together laterally the regionalized group velocities from different blocks at the same period to get group velocity image maps. These maps show that there is significant heterogeneity in the group velocity of the study region. The dispersion curve of each block was then processed by surface wave inversion method to obtain the shear wave velocity structure. Finally, we put the shear wave velocity structures of all the blocks together to obtain the three-dimensional shear wave velocity structure of crust and upper mantle. The three-dimensional shear wave velocity structure shows that the shear wave velocity distribution in the crust and upper mantle of the South China Sea and its surrounding regions displays significant heterogeneity. There are significant differences among the crustal thickness, the lithospheric thickness and the shear wave velocity of the lid in upper mantle of different structure units. This study shows that the South China Sea Basin, southeast Sulu Sea Basin and Celebes Sea Basin have thinner crust. The thickness of crust in South China Sea Basin is 5–10 km; in Indochina is 25–40 km; in Peninsular Malaysia is 30–35 km; in Borneo is 30–35 km; in Palawan is 35 km; in the Philippine Islands is 30–35 km, in Sunda Shelf is 30–35 km, in Southeast China is 30–40 km, in West Philippine Basin is 5–10 km. The South China Sea Basin has a lithosphere with thickness of about 45–50 km, and the shear wave velocity of its lid is about 4.3–4.7 km/s; Indochina has a lithosphere with thickness of about 55–70 km, and the shear wave velocity of its lid is about 4.3–4.5 km/s; Borneo has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.1–4.3 km/s; the Philippine Islands has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.2–4.3 km/s, West Philippine Basin has a lithosphere with thickness of about 50–55 km, and the shear wave velocity of its lid is about 4.7–4.8 km/s, Sunda Self has a lithosphere with thickness of about 55–65 km, and the shear wave velocity of its lid is about 4.3 km/s. The Red-River Fault Zone probably penetrates to a depth of at least 200 km and is plausibly the boundary between the South China Block and the Indosinia Block.  相似文献   

8.
The ultra-slow, asymmetrically-spreading Knipovich Ridge is the northernmost part of the Mid Atlantic ridge system. In the autumn of 2002 a combined ocean-bottom seismometer multichannel seismic (OBS/MCS) and gravity survey along the spreading direction of the Knipovich Ridge was carried out. The main objective of the study was to gain an insight into the crustal structure and composition of what is assumed to be an amagmatic segment of oceanic crust. P-wave velocity and Vp/Vs models were built and complemented by a gravity model. The 190 km long transect reveals a much more complex crustal structure than anticipated. The magmatic crust is thinner than the global average of 7.1 ± 1.0 km. The young fractured portion of Oceanic Layer 2 has low seismic velocities while the older part has normal seismic velocities and is broken into several rotated fault blocks seen as thickness variations of Layer 2. The youngest part of Oceanic Layer 3 is also dominated by low velocities, indicative of fracturing, seawater circulation and thermal expansion. The remaining portion of Layer 3 exhibits inverse variations in thickness and seismic velocity. This is explained by a sequence of periods of faster spreading (estimated to be up to 8 mm/year from interpretation of magnetic anomalies) when more normal gabbroic crust was being generated and periods of slower spreading (5.5 mm/year) when amagmatic stretching and serpentinization of the upper mantle occurred, and crust composed of mixed gabbro and serpentinized mantle was generated. The volumetric changes and upward fluid migration, associated with the process of serpentinization in this part of the crust, caused disruption to the overlying sedimentary layers.  相似文献   

9.
Five seismic refraction lines, 70–90 km long, were shot in the South Florida Platform region of the Gulf of Mexico using digital ocean-bottom seismographs. Apparent velocities and depths were calculated from the refracted arrivals using a flat-layer model for the region. The two dominant refractors have apparent compressional-wave velocity ranges of 5.6 to 5.9 km s–1 and 6.2 to 6.7 km s–1. On the Sarasota Arch, the depth to the top of a 5.8–5.9km/s layer is 3–4 km below sea level. This depth corresponds to the depth to the crystalline basement. The basement dips to the north and to the south from the arch, with velocity of the upper crust increasing from 5.8–5.9 km s–1 to a maximum of 6.7 km s–1 at a depth of 6.3 km. Under the continental slope, the crust has presumably been thinned and extended. The deepest refractor has an apparent velocity of about 7.5 km s–1 at a depth of 25 km. The thickness of the crustal section and the absence of any mantle arrivals in these long refraction profiles on the platform suggest that thick continental crust underlies the South Florida Platform. A north-south cross-section through the platform suggests the presence of two structural highs separated by a portion of the South Florida Basin, which contains at least 5 km of sediment.  相似文献   

10.
Morphologic, gravity, and seismic reflection/refraction data from ca. 10,000 km of Arctic passive continental margins suggest that the numerous oval free-air gravity anomalies, their +50–150 mGal extrema typically located just landward of shelf breaks, are caused by combinations of rapidly deposited Plio-Pleistocene glacial marine sediment loads, older post-breakup sediments, and perhaps causally related density anomalies (mascons) in the underlying oceanic crust. Dispersed seismicity associated with some gravity highs may reflect ongoing brittle, flexural adjustment to the loads. Multi-channel-seismic-controlled depocenter models for several prominent highs (including the Hornsund gravity high re-examined here) suggest that sediments alone do not suffice to explain the gravity highs, unless depocenter seismic velocities have been significantly underestimated. A flexural backstripping model for the Hornsund anomaly only roughly replicates observed gravity. Subjacent 'mascons', if present below some depocenters, may be caused by (1) anomalous subsidence of initially formed dense/thin crust; (2) depocenter blanketing of early-formed crust, mitigating hydrothermal fracturing and related density reduction; or (3) metastable phase transitions, converting basalt/gabbro to denser phases (Neugebauer–Spohn hypothesis), while cracks close or fill under the increased pressures and temperatures.  相似文献   

11.
The Sardinia Channel dataset was collected as part of the European Geotraverse (EGT)—a 4000 km seismic refraction line running from Northern Norway to the Sahara, designed to investigate the structure of the lithosphere beneath Europe. Wideangle seismic data recorded by ocean bottom seismometers deployed in the Sardinia Channel as part of the Southern Segment of the EGT, together with gravity data, were used to constrain the final crustal model. In the centre of the Channel the crust is identified as thinned continental in nature, with a crystalline thickness of 10 km overlain by 4 km of sediments and 2.5 km of water in the most extended region. High velocities in the lower crust in the central region are thought to represent an area of underplating or intrusion by igneous material caused by extension related to the opening of the Tyrrhenian Sea. The crust overlies an anomalously low velocity upper mantle.  相似文献   

12.
The sedimentary structure in the Gulf of Cadiz has been extensively studied by oil exploration companies. However, up to now little is known about its deep crustal structure. Moreover, the total thickness of the sedimentary layers remains unknown in large areas. The purpose of this paper is the crustal-scale interpretation of deep seismic near-vertical reflection and refraction/wide-angle reflection data obtained during the IAM (Iberian Atlantic Margins) project, carried out in 1993. Our results indicate that a continental type crust is underlying the entire Gulf of Cadiz, with progressive thinning from east to west. The sedimentary cover shows a great thickness, reaching 8 km in the center of the Gulf. Three main sedimentary units can be recognized: Jurassic-Cretaceous calcareous rocks, continuation of Algarve outcrops; the Allochthonous Units of Guadalquivir/Gulf of Cadiz, the offshore continuation of the inland Carmona nappe; and sub-horizontal post-Miocene marine sediments. The crystalline crust is divided into three main layers: the upper crust is characterized by P-wave velocity values of 5.7–6.1 km/s; the middle crust shows values of 6.3–6.4 km/s; the lower crust has a mean vertical velocity gradient of 0.02 km/s/km, with velocities between 6.9 to 7.1 km/s. The total crustal thickness varies from 27 km for the eastern part of the studied area, to 20 km for the westernmost part. The crustal thinning is more pronounced in a N-S direction than in an E-W direction. No major structures related with a defined Iberia-Africa plate boundary could be found. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
With the recently recovered organic-rich sediments of early Tertiary age from the Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302, the first data collection directly from source rocks of the central basins of the Arctic Ocean is now available. Using the results of seismic interpretations and published sedimentological and organic geochemical data from Expedition 302, the framework for the first quantitative assessment of source-rock quality and distribution of the Palaeogene sediments was modelled in the central Arctic Ocean. The modelling results suggest that an approximately 100-m-thick Early to Middle Eocene sedimentary sequence of good to very good source rocks exists along a 75 km long transect across the Lomonosov Ridge. In-situ generation of hydrocarbons is unlikely because the overburden (200–250 m) and consequently the thermal maturity are too low. Burial history and thermal modelling reveal that an additional overburden of at least 1000 m is necessary to start hydrocarbon generation along the ridge. However, source-rock modelling results show that good source-rock potential may exist in correlative units in the adjacent Amundsen Basin. Simulated organic carbon contents of 1.5–5%, coupled with an overburden of 1000–1200 m, and heat flow anomalies (117 and 100 mW m−2) due to the vicinity to the Gakkel Ridge spreading centre indicate that necessary conditions for hydrocarbon expulsion are already reached, and point to viability of a potential petroleum system. Our results support the hypothesis that deposition of a potentially good hydrocarbon source rock occurred across the entire Arctic Basin and adjacent margins during the early Tertiary.  相似文献   

14.
Crustal seismic structures beneath the West Philippine Sea are determined by using explosive sources (0.5–108.6 kg) and ocean bottom seismometers to measure refracted compressional waves. Total crustal thicknesses are shown to be thinner in the eastern part of the ocean basin, approaching only 3.5 km. Crustal thinning toward the east is consistent with the Palau Kyushu Ridge being a remnant transform fault connecting the Central Basin Ridge and the Kula Pacific Ridge in the past. A velocity-depth inversion from the westernmost refraction profile indicates the upper transitional crust layer to have strong velocity gradients which gradually decrease with depth; the lower crust is characterized by a nearly constant velocity gradient. The western part of the ocean basin is also shown to have more typical oceanic thicknesses, as is found in deep ocean basins of the Pacific. Spectral energy models using WKBJ synthetic seismograms suggest that there is a sharp seismic discontinuity between the crust and moho in the western part of the basin. Predicted water depths for the West Philippine Basin using an age-depth relation and corrected for an isostatic response to the measured crustal thicknesses, are still 300 meters shallower than observed depths. The depth anomaly can not be fully reconciled by thinner crust in the eastern part of the basin. This observation implies that a deeper seated anomaly is present beneath the West Philippine Basin.  相似文献   

15.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

16.
A seismic refraction survey along nine profiles has been carried out on the Norwegian continental shelf in the area between Andøya and Fugløybanken (69°–71°N). In all but one of the profiles the shelf is found to be covered with layered sediments. Average velocities are 1.85, 2.20, 2,55, 3.25, and 3.90 km/s probably representing sediments of Cenozoic and Mesozoic ages. An average velocity of 5.25 km/s represents a basement, which probably is the seaward continuation of the onshore Caledonian rocks. Except for an apparent depressional area just north of Andøya the sedimentary layers appear to dip towards the shelf edge. On the outer part of the shelf the 2.20 km/s layer appears at the sea-floor while more complex structures are found on the inner part of the shelf.Publication No. 3 in NTNF's Continental Shelf Project.  相似文献   

17.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

18.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

19.
On the Vøring volcanic passive margin offshore mid-Norway, NE Atlantic, a lower crustal body with P-wave velocities in the range of 7.1–7.7 km/s has been mapped by twenty two-dimensional Ocean Bottom Seismograph (OBS) profiles. The main aim of the present paper is to evaluate to what extent the lower crust is consistent with magmatic intrusions or serpentinized peridotite. The relatively low V p/V s ratios of 1.75–1.78 modelled for the lower crust under the continental part of the Vøring Plateau are consistent with mafic intrusions mixed with blocks of stretched continental crust, but not with the presence of partially serpentinized peridotites. The lower crustal high-velocity body is restricted to the area of the Late Cretaceous/Early Tertiary rift that lead to continental break-up in Early Eocene. The same model can explain the observations in the northern Vøring Basin, but in the central and southern Vøring Basin the seismic velocities do not preclude a model involving serpentinized peridotite in addition to intrusions and continental remnants. On the west Iberia non-volcanic margin a similar layer is interpreted as serpentinized peridotite. The existence of Moho reflections, the observation of S-wave anisotropy but absence of P-wave anisotropy, uncertainties regarding supply of water to allow for significant serpentinization and very low stretching factors compared with the west Iberia Margin, are among factors that argue against the presence of serpentinized peridotite in the Vøring Basin.  相似文献   

20.
Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone.The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km.The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m–2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m–1 K–1 respectively).We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号