共查询到20条相似文献,搜索用时 15 毫秒
1.
Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N–S, NE–SW and NW–SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street’s meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE–SW or N–S street direction and to the SW of a NW–SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW–SE street direction, to the NW and the zenith for a NE–SW street direction and to the zenith for a N–S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun’s trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal comfort conditions. 相似文献
2.
Summary The paper presents an overview of the influence of street architecture on the wind and turbulence patterns in street canyons and discusses the effects on local air quality. The findings of recent experimental and numerical studies are summarized and wind-tunnel data sets are presented that illustrate the flow-field variability. It is shown that small-scale features of the street architecture play an important role. The formation of a vortex inside the street canyon is affected by the roof configuration. In shorter street canyons, the flow component along the street becomes important for pollutant transport. These results are of importance for urban air quality modeling in particular when dealing with pollution problems caused by road traffic. Furthermore, the findings should be taken into account in fast response models that are used to assess critical areas in the case of accidental or non-accidental releases of hazardous material in urban areas. 相似文献
3.
4.
5.
Jae-Jin Kim Eric Pardyjak Do-Yong Kim Kyoung-Soo Han Byung-Hyuk Kwon 《Asia-Pacific Journal of Atmospheric Sciences》2014,50(3):365-375
The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon. 相似文献
6.
应用雷诺应力湍流模型,模拟了不同高度比的城市街道峡谷的气流场。结果表明:峡谷的对称性对其内部气流场有显著影响。前高后低型峡谷下部为逆时针旋涡,上部为顺时针旋涡,峡谷越深,流场发展的越充分;峡谷内部墙面存在明显的驻点。前低后高型峡谷只存在一个大的顺时针旋涡,随着峡谷的加深,内部气流速率有减小的趋势;峡谷达到一定深度后出现驻点。对称型峡谷内部形成了顺时针旋涡,强度不大;随着峡谷的加深,内部流场转为一顺一反2个旋涡的二元结构;仅当峡谷很深时才出现明显驻点。前低后高型峡谷的气流场形式更有利于污染物的迁移、扩散,在城市规划中应尽量结合主导风向设计这类建筑布局。 相似文献
7.
Loyde V. Abreu-Harbich Lucila C. Labaki Andreas Matzarakis 《Theoretical and Applied Climatology》2014,115(1-2):333-340
Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003–2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast–southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues. 相似文献
8.
Nicole Müller Wilhelm Kuttler Andreas-Bent Barlag 《Theoretical and Applied Climatology》2014,115(1-2):243-257
Cities represent thermal load areas compared with their surrounding environments. Due to climate change, summer heat events will increase. Therefore, mitigation and adaptation are needed. In this study, meteorological measurements in various local climate zones were performed to demonstrate the influence of evaporation surfaces and other factors on thermal comfort, as determined by the physiologically equivalent temperature (PET). Furthermore, a quantification of the thermal effects of several adaptation measures and varying meteorological parameters was made using model simulations (ENVI-met) in an inner-city neighborhood (Oberhausen, Germany). The results show that the most effective adaptation measure was increased wind speed (maximal 15 K PET reduction). Moreover, vegetation areas show greater PET reductions by the combination of shading and evapotranspiration than water surfaces. The creation of park areas with sufficient water supply and tall, isolated, shade-providing trees that allow for adequate ventilation can be recommended for planning. 相似文献
9.
Numerical and experimental studies on flow and pollutant dispersion in urban street canyons 总被引:1,自引:0,他引:1
In this study numerical simulations and water tank experiments were used to investigate the flow and pollutant dispersion in an urban street canyon. Two types of canyon geometry were tested. The studies indicate that in a step-up notch canyon (higher buildings on the downstream side of the canyon), the height and shape of the upstream lower buildings plays an important role in flow pattern and pollutant dispersion, while in a step-down notch canyon (lower buildings on the downstream side), the downstream lower buildings have little influence. The studies also show that the substitution of tall towers for parailelepiped buildings on one side of the canyon may enhance the street ventilation and decrease the pollutant concentration emitted by motor vehicles. 相似文献
10.
11.
A numerical scheme is described for the calculation of effective albedo values of long city street canyons. The method is based on a generalization of the radiation model for inclined surfaces recently presented by Brühl and Zdunkowski (1983). Calculated albedo values are compared with Aida's (1982) experimentally determined results. It is found that experiment and theory are in reasonable and in some cases in excellent agreement. Additional results obtained by varying the geometry of the street canyon as well as the surface reflectivities are shown to demonstrate the versatility of the calculation scheme. 相似文献
12.
The role of radiative-convective interaction in creating the microclimate of urban street canyons 总被引:2,自引:2,他引:2
Hanna Swaid 《Boundary-Layer Meteorology》1993,64(3):231-259
An approximate sky view factor (SVF) has been developed, which is capable of estimating the mean rate of net longwave radiant energy loss from urban street canyons. Reduced scale models of typical canyon geometries were used in outdoor tests to verify the predictions of radiant fluxes obtained using the proposed SVF. Air-surface temperature differences from the scale models are used together with hypothesized within-canyon airflow patterns to determine some quantitative characteristics of the wind field in canyons. Simple correlations are proposed for the relationship between mean in-canyon and pedestrian-level flow speeds on the one hand, and the ambient (above roof-level) wind speed on the other hand. As expected, the height/width ratio of a canyon controls the form and magnitude of the flow within. 相似文献
13.
Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind,the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building. 相似文献
14.
Summary A human energy balance model is calculated using the homogeneous data set of Vienna, Austria (48°N and 16° E). Variations in the different stages of comfort since 1873 are discussed. The historical data are then used to generate scenarios of a changing climate and calculate the impact of these variations on thermal comfort.With 5 Figures 相似文献
15.
甘肃省气候舒适度时空分异特征研究 总被引:1,自引:0,他引:1
利用甘肃省37个气象台站的气候资料,采用温湿指数、风寒指数、着衣指数及综合舒适度指数等气候舒适度指标和反距离权重空间插值分析方法,对甘肃省气候舒适度的时空分异特征进行了详细分析,研究表明,4—10月气候舒适度都比较优越,6—8月气候舒适度最佳,1月、12月气候舒适度较差。气候舒适度整体呈纬度地带性变化,由东南向西北递减,同时垂直地带性影响显著,导致海拔较高的南部和中部地区气候舒适度较差,其中陇南市、天水市和白银市气候舒适度最好,其次为平凉市、庆阳市等地区,比较差的有甘南藏族自治州、张掖市和金昌市等地区。研究结果全面反映了甘肃省气候舒适度的时空分异规律,对于研究区旅游规划、人口分布研究等有一定参考价值。 相似文献
16.
17.
旅游气候舒适度指数比较分析 总被引:1,自引:0,他引:1
以贵阳市1961—2008年48 a气候统计资料,计算国内外常用的旅游气候舒适度指数,对各指数的评价结果进行比较分析。结果表明:各气候舒适度指数的评价结果差异很大,产生差异的原因是评价指数本身决定的。 相似文献
18.
19.
Research in developing countries concerning the relationship of weather and climate conditions with tourism shows a high importance not only because of financial aspects but also an important part of the region’s tourism resource base. Monthly mean air temperature, relative humidity, precipitation, vapor pressure, wind velocity, and cloud cover for the period 1985–2005 data collected from four meteorological stations Tabriz, Maragheh, Orumieh, and Khoy were selected. The purpose of this study is to determine the most suitable months for human thermal comfort in Ourmieh Lake, a salt sea in the northwest of Iran. To achieve this, the cooling power and physiologically equivalent temperature (PET) calculated by the RayMan model and the Climate Tourism/Transfer Information Scheme (CTIS) were used. The results based on cooling power indicate that the most favorable period for tourism, sporting, and recreational activities in Ourmieh Lake is between June and October and based on PET between June to September. In addition, the CTIS shows a detailed quantification of the relevant climate–tourism factors. 相似文献
20.
1966—2018年秦皇岛气候舒适度时空变化特征 总被引:1,自引:0,他引:1
利用1966—2018年气象资料,采用气候舒适度评价及趋势分析方法,对秦皇岛地区近53 a气候舒适度变化进行分析。结果表明:秦皇岛北部山区、中部平原和东南沿海三个区域的气候舒适度变化趋势一致,存在空间差异性。整体上,秦皇岛气候舒适度以舒适至冷凉特征为主,各区域舒适和较舒适等级占47%—49%,冷不舒适等级占34%—37%,炎热及更热不舒适等级极少。近53 a,夏季、冬季气候舒适度均呈增暖趋势,冬季增暖幅度大于夏季。热不舒适日数自20世纪90年代开始激增且持续偏多,寒冷不舒适日数呈逐年代减少态势;在空间上,热不舒适日数随着测站高程和纬度的降低而增多,寒冷不舒适日数与之相反。5—10月气候舒适或较舒适,秦皇岛全域皆为旅游、疗养适宜期;7—8月无酷暑,“微热”的天气为人们提供畅游大海的有利气象条件;3月、4月和11月气候偏冷凉,是户外登山的大好时机;12月至翌年2月寒冷不舒适,不适宜大众旅游疗养,适宜开展冰雪旅游活动。因此,可以认为秦皇岛全域、全季皆适宜旅游,由此为秦皇岛市旅游开发与规划及研究气候变化对旅游业的影响提供依据,为来到“秦皇山海、康养福地”的康养群体提供生活和出游气象服务指导。 相似文献