首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarity solutions describing the flow of a perfect gas behind a cylindrical shock wave with transverse magnetic field are investigated in an inhomogeneous medium. The total energy of the shock wave is assumed to be constant. A comparative study has been made between the results with and without magnetic field.  相似文献   

2.
Using a well-known similarity method, different aspects of cylindrical shock waves in magnetogasdynamics are investigated. Weak and strong shocks have been discussed in strong magnetic field. Combined effects of both the components of magnetic field on flow variables are studied.  相似文献   

3.
The structure of strong shock waves in a thermally-radiating and electrically-conducting fluid is studied by method of asymptotic matching principle. It is assumed that upstream of the shock the gas is cold and does not radiate thermally while the Mach number (M) is very high so that after being shocked the gas now thermally radiates. The viscosity of the gas () depends on temperature (T) in the simple manner T where is a constant exponent. The problem is worthy of note in high-temperature phenomena in hypersonic flow.  相似文献   

4.
The converging cylindrical and spherical shock waves have been numerically simulated. The flow is created by rupturing the diaphragm. The behaviour of the solution in the focussing stage is closely investigated and compared with the other results. An invariant difference scheme of Rusanov is used to follow the propagation of the shock wave. The study includes not only the moderate initial pressure ratio but also pressure ratios amounting up to thousands. The same scheme has been used from the initial stage of the focussing stage near the axis.  相似文献   

5.
A comparative study has been made between the effects of transverse and axial components of the magnetic field on the self-similar flow variables of the field behind the cylindrical shock waves propagating into a non-uniform atmosphere at rest. The total energy of the wave is constant.  相似文献   

6.
Cylindrical Korteweg-de Vries-Burgers (cKdVB) equation for magnetoacoustic wave is derived for dissipative magneto plasmas. Two fluid collisionless electromagnetic model is considered and reductive perturbation method is employed to study the propagation of magnetoacoustic shock waves in cylindrical geometry. Two level finite difference method is employed by using Runge-Kutta method to solve cKdVB equation numerically. The effects of nonplanar geometry, plasma density, magnetic field strength, temperature dependence and kinematic viscosity on magnetoacoustic shocks are investigated. The numerical results are also presented for illustration.  相似文献   

7.
Similarity solutions describing the flow of a perfect gas behind cylindrical shock waves with radiation heat flux are investigated. The total energy of the expanding wave has been supposed to remain constant. The solution, however, is only applicable to a gaseous medium where the undisturbed pressure falls as the inverse square of the distance from the line of explosion.  相似文献   

8.
R. Mäckle 《Solar physics》1969,10(2):348-356
MHD equations including dissipation terms are applied to study the most important irreversible processes occurring in fast hydromagnetic shock waves under the conditions of the outer solar atmosphere. The atmosphere is assumed to be permeated by a nearly horizontal, uniform magnetic field, the magnitude and inclination angle of which being parameters of the analysis. Numerical examples, corresponding to situations which might occur in the upper chromosphere, are computed in order to demonstrate the procedure.  相似文献   

9.
A self-similar solution to the problem of the implosion of a cylindrical shock wave in the presence of a magnetic field has been investigated. A strong shock wave in a cylindrically-symmetric flow travels to the axis of symmetry through a gas of uniform initial density 0 and zero-pressure. A comparative study has been made between the results obtained in ordinary gasdynamics and magnetogasdynamics with transverse and axial components of the magnetic field. The value of similarity exponent has been assigned from that found in the paper of Whitham (1958).  相似文献   

10.
The effect of overtaking disturbances upon the free propagation of strong cylindrical hydromagnetic shock through a self-gravitating gas has been studied by an approximating technique developed by Yadav. Assuming an initial density distribution law as 0=r–w, where is the density at the axis of symmetry and is a constant, the analytical relation for shock velocity and shock strength modified by overtaking waves has been obtained under two conditions: viz., (i) when the applied axial magnetic field is strong and (ii) when the field is weak. The results obtained here are compared with those for a freely propagating shock. The conclusions arrived at agreed with experimental results.It is shown that the applications of the CCW method and the neglect of overtaking disturbances are equivalent.  相似文献   

11.
Similarity solutions for propagation of plane relativistic shock waves through a medium of decreasing nucleon density and approaching the edge of the gas as well as for the subsequent motion of the gas after the shock front arrives at the vacuous boundary are studied in this paper. The medium in the pre-disturbed stage is assumed cold and in the disturbed stage its equation of state is taken as that of a photonic gas.  相似文献   

12.
The C.C.W. method has been used to investigate the propagation of converging and diverging cylindrical shock waves in a non-uniform medium under the influence of a magnetic field of constant strength. A comparison has also been made between the two types of cylindrical shock waves, simultaneously for both weak and strong cases of the magnetic field. Density distribution is assumed to be o = r , where is the density at the axis of symmetry and a constant. The analytical expressions for shock velocity and shock strength as well as the pressure, the density, and the particle velocity just behind the shock front have been derived for both the cases.  相似文献   

13.
Strong cylindrical magnetogasdynamic shock waves in rotating interplanetary medium has been studied and an analytic solution for their propagation has been obtained. Using characteristic method and considering the effect of Coriolis force, we have shown that magnetic field has significant effect on the velocity of the shock wave.  相似文献   

14.
Most measurements of long period ULF pulsations have come from ground based and single satellite observations. The observations have given strong support to the idea that these waves are resonant standing hydromagnetic waves on geomagnetic field lines. Simultaneous ground-satellite observations provide further details of the pulsation structure and are useful for examining the effect of the ionosphere on the transmission of the waves to the ground. Recently, multisatellite observations have been used to provide further insight into the nature of pulsations and we review the results obtained using this technique. Among the results presented are those from the ISEE 1 and 2 spacecraft which are closely spaced in identical orbits, making it possible to distinguish temporal from spatial structure in waves. The ISEE spacecraft have made measurements of resonant region widths and resonance harmonics. In addition, examples are shown of recent multisatellite observations of the global nature of some pulsations and the localization of Pi2 pulsations in space.  相似文献   

15.
We investigate the effects of radiative heat losses and thermal conductivity on the hydromagnetic surface waves along a magnetic discontinuity in a plasma of infinite electrical conductivity. We show that the effects of radiative heat losses on such surface waves are appreciable only when values of the plasma pressure on the two sides of the discontinuity are substantially different. Overstability of a surface wave requires that the medium in which it gives larger first-order compression should satisfy the criterion of Field (1965). Possible applications of the study to magnetic discontinuities in solar corona are briefly discussed.Collaborative programme in Astronomy and Astrophysics, Department of Physics, Indian Institute of Science, Bangalore 560012, India.  相似文献   

16.
The dispersion equation for hydromagnetic surface waves along a plasma-plasma interface has been solved as a function of the compressibility factor c 1/v A1, where c 1 and v A1 are the acoustic and Alfvén wave speed in one of the medium, for general wave propagation direction. Both slow and fast magnetosonic surface waves can exist. The nature and existence of these waves depends on the values of c 1/v A1 and , the angle of wave propagation. For low- plasmas only fast mode exists. The slow mode does not propagate below a critical value of c 1. When c 1 the phase velocity of the slow wave tend to the Alfvén surface wave velocity in the incompressible media and for large the phase velocity of the fast wave approaches this value. The phase velocity of the slow wave increases whereas for the fast wave it decreases with increase in the angle .  相似文献   

17.
It is never too strange to expect that an eventual fifth repulsive interaction may also be mediated by a spin-2 field. On the other hand, it is highly unlikely that a spin-1 field may mediate an attractive force.  相似文献   

18.
A model of cylindrical shock waves is investigated under the action of monochromatic radiation into non-uniform stellar interiors with a constant intensity on a unit area. We have assumed that the radiation flux moves through the gas.  相似文献   

19.
The propagation of radiative-magnetogasdynamic cylindrical shock waves in an exponentially increasing medium is investigated. The shock wave moves with variable velocity and the total energy of the wave is also variable. The transformations in terms of , as given in the text, is necessarily a non-similarity one.  相似文献   

20.
During magnetically quiet or slightly disturbed nights, closely correlated oscillations of the geomagnetic field and the F-layer were observed by means of magnetometers and a vertical-icidence continuous-wave Doppler sounder at 3.57 MHz. The magnetic oscillations were mostly Pi2 pulsations with periods from 0.5 to 2 min, and an amplitude of 10?9 T corresponding to a Doppler shift of the order of 0.3 Hz. The observations cannot be explained by a dynamo-motor hypothesis assuming that the magnetic and ionospheric oscillations are caused by alternating E-layer currents, but they agree well with the theory of downgoing hydromagnetic waves. In particular, this theory explains the observed effects due to sporadic E-layer ionization and ion-neutral collisions. The results are found to differ substantially from those of other authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号