首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gaussian beam summation method is used for numerical modelling of seismic wave fields in several simple types of models of media. Main attention is paid to the waves reflected from a plane interface, namely from the vicinity of a critical point. Comparison with exact solutions shows that the Gaussian beam summation method yields sufficiently accurate results even in the singular region of the critical point. By summation of Gaussian beams of waves reflected in the overcritical region even head waves are obtained. In the second part of this work, we shall investigate sensitivity of the results to various parameters, for example, to the initial width of a Gaussian beam, to the parameters of the summation of Gaussian beams, etc.  相似文献   

2.
An overview of two types of beam solutions is presented, Gaussian beams and Bessel beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams stay bounded over a certain propagation range after which they diverge. Bessel beams are among a class of solutions to the wave equation that are ideally diffraction-free and do not diverge when they propagate. They can be described by plane waves with normal vectors along a cone with a fixed angle from the beam propagation direction. X-waves are an example of pulsed beams that propagate in an undistorted fashion. For realizable localized beam solutions, Bessel beams must ultimately be windowed by an aperture, and for a Gaussian tapered window function this results in Bessel-Gauss beams. Bessel-Gauss beams can also be realized by a combination of Gaussian beams propagating along a cone with a fixed opening angle. Depending on the beam parameters, Bessel-Gauss beams can be used to describe a range of beams solutions with Gaussian beams and Bessel beams as end-members. Both Gaussian beams, as well as limited diffraction beams, can be used as building blocks for the modeling and synthesis of other types of wave fields. In seismology and geophysics, limited diffraction beams have the potential of providing improved controllability of the beam solutions and a large depth of focus in the subsurface for seismic imaging.  相似文献   

3.
We present a Gaussian packet migration method based on Gabor frame decomposition and asymptotic propagation of Gaussian packets. A Gaussian packet has both Gaussian‐shaped time–frequency localization and space–direction localization. Its evolution can be obtained by ray tracing and dynamic ray tracing. In this paper, we first briefly review the concept of Gaussian packets. After discussing how initial parameters affect the shape of a Gaussian packet, we then propose two Gabor‐frame‐based Gaussian packet decomposition methods that can sparsely and accurately represent seismic data. One method is the dreamlet–Gaussian packet method. Dreamlets are physical wavelets defined on an observation plane and can represent seismic data efficiently in the local time–frequency space–wavenumber domain. After decomposition, dreamlet coefficients can be easily converted to the corresponding Gaussian packet coefficients. The other method is the Gabor‐frame Gaussian beam method. In this method, a local slant stack, which is widely used in Gaussian beam migration, is combined with the Gabor frame decomposition to obtain uniform sampled horizontal slowness for each local frequency. Based on these decomposition methods, we derive a poststack depth migration method through the summation of the backpropagated Gaussian packets and the application of the imaging condition. To demonstrate the Gaussian packet evolution and migration/imaging in complex models, we show several numerical examples. We first use the evolution of a single Gaussian packet in media with different complexities to show the accuracy of Gaussian packet propagation. Then we test the point source responses in smoothed varying velocity models to show the accuracy of Gaussian packet summation. Finally, using poststack synthetic data sets of a four‐layer model and the two‐dimensional SEG/EAGE model, we demonstrate the validity and accuracy of the migration method. Compared with the more accurate but more time‐consuming one‐way wave‐equation‐based migration, such as beamlet migration, the Gaussian packet method proposed in this paper can correctly image the major structures of the complex model, especially in subsalt areas, with much higher efficiency. This shows the application potential of Gaussian packet migration in complicated areas.  相似文献   

4.
高斯束逆时偏移结合了射线类偏移的高计算效率和波动方程逆时偏移的高精度,能很好地处理焦散点、大倾角成像问题,并且具有面向目标成像的能力.多分量地震资料的偏移技术可以对地下复杂构造进行更准确的成像,由于实际地下介质具有黏滞性,研究黏弹性叠前逆时偏移具有一定的现实意义.本文采用高斯束逆时偏移方法对多分量地震数据进行吸收衰减补偿,首先分别给出纵波和转换波共炮域高斯束叠前逆时偏移方法原理,在此基础上推导补偿吸收衰减的表达式,校正Q引起的振幅衰减和相位畸变,实现基于吸收衰减补偿的多分量高斯束叠前逆时偏移.数值模型的测试结果显示,在考虑地下介质的黏滞性时,本文方法具有更高的成像分辨率.  相似文献   

5.
高斯射线束(GB)方法是一种用于计算不均匀介质中波场的高频近似方法。本文在详细讨论了几种用高斯射线束叠加计算理论地震图的方法--频谱法、褶积法和波包法之后,提出了适用范围更广泛的混合方法(褶积-波包法),并给出了一个便于数值计算的褶积公式。混合法在计算GB理论地震图时既用褶积法又用波包法,可以得到较高的计算速度与精度。最后,就二维情况分别用褶积法、波包法和混合法进行了一些实际计算和比较。  相似文献   

6.
叠前地震资料中,高频分量和低频分量随传播距离的衰减特性不同.本文给出了一种在小波域定性估计叠前地震资料衰减参数的方法.该方法利用连续小波变换提取共反射点道集的高、低频分量,以低频分量和高频分量之差定性反映地震波的衰减.通过累加不同偏移距的衰减,提高了估计的稳定性;采用幅度归一化方法,降低了信号幅值对衰减参数估计的影响.将本文提出方法与常用的基于叠后地震资料衰减估计方法用于某油田的地震资料处理,结果表明,本文方法得到的衰减估计结果能够更好地反映油气的空间展布.  相似文献   

7.
The application of Maslov asymptotic theory in a general 3-D mixed subspace of 6-D complex phase space is proposed to obtain the integral superpositions of Gaussian packets and beams. The ray method and the superposition of plane waves (Maslov method of Chapman and Drumond [7]) are special limiting cases of the above mentioned approach. The same high-frequency asymptotic expansion formulae for seismic body waves were derived previously in [8] using the Gaussian beam method.  相似文献   

8.
Localization of fractured areas is of primary interest in the study of oil and gas geology in carbonate environments. Hydrocarbon reservoirs in these environments are embedded within an impenetrable rock matrix but possess a rich system of various microheterogeneities, i.e., cavities, cracks, and fractures. Cavities accumulate oil, but its flow is governed by a system of fractures. A distinctive feature of wave propagation in such media is the excitation of the scattered/diffracted waves by the microheterogeneities. This scattering could be a reliable attribute for characterization of the fine structure of reservoirs, but it has extremely low energy and any standard data processing renders them practically invisible in comparison with images produced by specular reflections. Therefore, any attempts to use these waves for image congestion of microheterogeneities should first have a preliminary separation of the scattering and specular reflections. In this paper, the approach to performing this separation is based on the asymmetric summation. It is implemented by double focusing of Gaussian beams. To do this, the special weights are computed by propagating Gaussian beams from the target area towards the acquisition system separately for sources and receivers. The different mutual positioning of beams in each pair introduces a variety of selective images that are destined to represent some selected singular primitives of the target objects such as fractures, cavities, and edges. In this way, one can construct various wave images of a target reservoir, particularly in scattered/diffracted waves. Additional removal of remnants of specular reflections is done by means of spectral analysis of the scattered/diffracted waves' images to recognize and cancel extended lineaments. Numerical experiments with Sigsbee 2A synthetic seismic data and some typical structures of the Yurubcheno‐Tokhomskoye oil field in East Siberia are presented and discussed.  相似文献   

9.
声波介质一次散射波场高斯束Born正演   总被引:1,自引:1,他引:0       下载免费PDF全文
Born正演是一种常用的地震波场正演模拟方法,也是线性化地震反演的理论基础.在实际应用时,Born正演通常结合常规的地震射线方法进行实现.为了克服常规地震射线方法的弊端,并且保证地震波场的模拟精度和计算效率,本文提出了一种基于高斯束的一阶散射波场Born正演方法.该方法分为两个环节:首先,我们利用高斯束的走时和振幅信息将地下散射点处的反射率映射为地表束中心位置处的局部平面波;然后,我们利用逆倾斜叠加将局部平面波转化为接收点处的时空域散射波场.在具体的实施过程中,我们提出一种以wavelet-bank方式实现的局部平面波合成方法,同现有的算法相比,可以在保持计算精度的同时,大大减少计算时间;此外,我们还利用最速下降法优化了高斯束的迭代循环过程,进一步提高了Born正演的计算效率.两个模型的应用效果证明,本文所提出的高斯束Born正演方法可以精确、高效的实现声波介质一次散射波场的正演模拟,为三维大规模地震波场的正演问题提供了一种切实可行的实现方案.  相似文献   

10.
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss–Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.  相似文献   

11.
TI介质局部角度域高斯束叠前深度偏移成像   总被引:4,自引:4,他引:0       下载免费PDF全文
各向异性射线理论基础上的局部角度域叠前深度偏移方法能够为深度域构造成像与基于角道集的层析反演提供有力支撑,但是对于复杂地质构造而言,高斯度叠前深度偏移在不失高效、灵活等特点的情况下,具有明显的精度优势.为此,本文研究局部角度域理论框架下的高斯束叠前深度偏移方法.为提高算法效率与实用性,文中讨论了一种从经典弹性参数表征的各向异性介质运动学和动力学射线方程演变而来的由相速度表征的简便形式,并提出了一种比较经济的各向异性高斯束近似合成方案.结合地震波局部角度域成像原理,讨论一种适合高斯束偏移的角度参数计算方法.国际上通用的理论模型合成数据试验表明:相比局部角度域Kirchhoff叠前深度偏移成像方法,本文方法具有更高的成像精度与抗噪能力,既适用于复杂构造成像,也可为TI介质深度域偏移速度分析与模型建立提供高效的偏移引擎.  相似文献   

12.
基于有效邻域波场近似的起伏地表保幅高斯束偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
随着我国陆上地震勘探向复杂地表探区的转移,高精度、适应性强的地震成像方法在地震资料的处理、解释及后续属性分析、储层预测中具有重要意义.本文基于有效邻域波场近似理论发展了一种成像精度更高且适用于复杂起伏地表条件的叠前保幅高斯束偏移方法.在传统水平地表高斯束偏移的基础上,本文根据中心射线附近有效邻域内高斯束表征的近似波场,导出了起伏地表条件下具有相对振幅保持的高斯束偏移公式,并给出了一种精度更高的旁轴射线传播角度计算方法.同现有的高斯束偏移方法相比,本文方法不仅考虑了起伏地表对高斯束走时的线性影响,而且首次引入了由地表高程差异和近地表速度变化引起的二次时差校正项和振幅校正项,使得成像结果更加准确可靠.两个典型模型算例验证了本文方法的正确性和有效性.  相似文献   

13.
Expansion of a plane wave into Gaussian beams   总被引:1,自引:0,他引:1  
Summary An integral expansion which expresses a plane monochromatic wave as a superposition of Gaussian beams is found. The expansion can be used to solve many wave propagation problems in complicated structures, including laterally inhomogeneous media with curved interfaces.  相似文献   

14.
A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.  相似文献   

15.
裂隙型单斜介质中多方位地面三分量记录模拟   总被引:23,自引:3,他引:20       下载免费PDF全文
针对裂隙型储集层中更具代表性的各向异性介质模型,即在各向同性背景介质中含有两组斜交的垂直裂隙所构成的单斜各向异性介质模型,利用时间和空间上可达任意阶的高阶交错网格有限差分技术,对具有不同裂隙填充物性质的单斜介质中波的传播快照进行了模拟.结果证实各向异性介质中波的传播速度随传播方向的不同而产生明显的差异;裂隙填充物的性质对于速度各向异性具有很大的影响.另外,利用坐标旋转法,对水平层状各向异性介质中多方位地面三分量记录进行了模拟,结果表明了方位各向异性介质中,波的传播速度不仅随入射角的变化而变化,同时也随观测方位的不同而产生差异.数值模拟结果为进一步利用地面多方位地震属性进行各向异性参数的反演及裂隙参数的描述提供理论基础.  相似文献   

16.
Prestack depth migration is a key technology for imaging complex reservoirs in media with strong lateral velocity variations. Prestack migrations are broadly separated into ray-based and wave-equation-based methods. Because of its efficiency and flexibility, ray-based Kirchhoff migration is popular in the industry. However, it has difficulties in dealing with the multi-arrivals, caustics and shadow zones. On the other hand, wave-equation-based methods produce images superior to that of the ray-based methods, but they are expensive numerically, especially methods based on two-way propagators in imaging large regions. Therefore, reverse time migration algorithms with Gaussian beams have recently been proposed to reduce the cost, as they combine the high computational efficiency of Gaussian beam migration and the high accuracy of reverse time migration. However, this method was based on the assumption that the subsurface is isotropic. As the acquired azimuth and maximum offsets increase, taking into account the influence of anisotropy on seismic migration is becoming more and more crucial. Using anisotropic ray tracing systems in terms of phase velocity, we proposed an anisotropic reverse time migration using the Gaussian beams method. We consider the influence of anisotropy on the propagation direction and calculate the amplitude of Gaussian beams with optimized correlation coefficients in dynamic ray tracing, which simplifies the calculations and improves the applicability of the proposed method. Numerical tests on anisotropic models demonstrate the efficiency and accuracy of the proposed method, which can be used to image complex structures in the presence of anisotropy in the overburden.  相似文献   

17.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation.  相似文献   

18.
地下介质中普遍存在着各向异性,当前基于各向异性的地震波射线追踪多是在弱各向异性介质中进行且采用群速度近似表示方法,这些近似方法在强各项异性介质中会导致很大误差而无法真正模拟地震波的传播规律。根据地下普遍存在各向异性的事实和地震波基本传播规律,提出利用牛顿迭代法高效求解群速度,基于Paraview平台自动化构建三维地质模型,采用最短路径法进行地震波射线追踪模拟及可视化,实现对复杂三维地质的速度不均匀性和各向异性的表达,为三维地质模型的构建和地震波射线追踪模拟及可视化提供一种新思路,并以华北克拉通山西断陷带北部局部区域为例进行研究。结果表明,该方法能够减少由各向异性对地震波传播模拟造成的影响,清晰表达了研究区地质结构和各向异性特点,在对复杂三维地质结构的解读中能够较好应用。  相似文献   

19.
复杂山地随机介质GMM-ULTI法射线追踪   总被引:2,自引:2,他引:0       下载免费PDF全文
对复杂山地介质的非均质性以及介质中地震波运动学特征进行深入研究,对于提高复杂山地区域地震勘探的效果有着重要的理论意义和实际价值.为了研究复杂山地非均质性和该介质中地震波的一些运动特性,提出了一种复杂山地随机介质的建模方法和一种新的射线追踪算法.与常规算法相比,复杂山地随机介质的生成方法采用更贴近实际介质特点的梯度介质作为背景介质,并在模型生成过程中加入地形修正步骤;新提出的GMM-ULTI射线追踪算法,充分融合群推进法、迎风思想、走时插值法的优势,采用先计算走时后追踪射线路径的两步策略完成射线追踪.算法分析与计算实例表明:复杂山地随机介质的生成方法能灵活、精细且更贴近实际地刻画复杂山地介质的非均质特点;新射线追踪算法兼顾精度和效率、能无条件稳定且灵活地适应复杂山地随机介质的特点;同时基于对几个模型试算结果的分析也得出了复杂山地随机介质中的地震波的一些传播规律.  相似文献   

20.
We carry out a sequence of numerical tests to understand conditions under which rapid changes in crustal thickness can be reliably imaged by teleseismic body waves. Using the finite-difference method over a 2-D grid, we compute synthetic seismograms resulting from a planar P-wavefield incident below the grid. We then image the Moho using a migration scheme based on the Gaussian beam representation of the wavefield. The use of Gaussian beams for the downward propagation of the wavefield is particularly advantageous in certain geologically critical cases such as overthrusting of continental lithosphere, resulting in the juxtaposition of high-velocity mantle material over crustal rocks. In contrast to ray-based methods, Gaussian beam migration requires no special treatment to handle such heterogeneities. Our results suggest that with adequate station spacing and signal-to-noise ratios, offsets of the Moho, on the order of 10 km in height, can be reliably imaged beneath thickened crust at depths of about 50 km. Furthermore, even sharp corners and edges are faithfully imaged when precise values of seismic wave speeds are available. Our tests also demonstrate that flexibility in choices of different types of seismic phases is important, because any single phase has trade-offs in issues such as spatial resolution, array aperture, and amplitude of signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号