首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orbits and manifolds near the equilibrium points around a rotating asteroid   总被引:6,自引:0,他引:6  
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.  相似文献   

2.
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.  相似文献   

3.
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.  相似文献   

4.
The third-order parametric expansions given by Buck in 1920 for the three-dimensional periodic solutions about the triangular equilibrium points of the restricted Problem are improved by fourthorder terms. The corresponding family of periodic orbits, which are symmetrical w.r.t. the (x, y) plane, is computed numerically for =0.00095. It is found that the family emanating from L4 terminates at the other triangular point L5 while it bifurcates with the family of three-dimensional periodic orbits originating at the collinear equilibrium point L3. This family consists of stable and unstable members. A second family of nonsymmetric three-dimensional periodic orbits is found to bifurcate from the previous one. It is also determined numerically until a collision orbit is encountered with the computations.  相似文献   

5.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

6.
We study the families of simple periodic orbits in a three-dimensional system that represents the inner parts of a perturbed triaxial galaxy. The perturbations depend on two control parameters. We find the regions where each family is stable, simply unstable, doubly unstable, or complex unstable. the stable and simply unstable families produce other families by bifurcation. Several families reach a maximum (or minimum) perturbation and then are continued by other families. The bifurcations are direct or inverse. The transition from one type of bifurcation to the other is theoretically explained. Another important phenomenon is the splitting of one family into two, or the joining of two families into one. We do not have any complex instability in the limiting cases of two-dimensional motions (when one control parameter is zero).The two main families of periodic orbits are in most cases stable when the energy is smaller than the escape energy. Most high energy orbits are unstable. However, we found stable orbits even for energies about four times larger than the escape energy.  相似文献   

7.
Stability of the planar full 2-body problem   总被引:1,自引:0,他引:1  
The stability of the Full Two-Body Problem is studied in the case where both bodies are non-spherical, but are restricted to planar motion. The mutual potential is expanded up to second order in the mass moments, yielding a highly symmetric yet non-trivial dynamical system. For this system we identify all relative equilibria and determine their stability properties, with an emphasis on finding the energetically stable relative equilibria and conditions for Hill stability of the system. The energetically stable relative equilibria always correspond to the classical “gravity gradient” configuration with the long ends of the two bodies pointed at each other, however there always exists a second equilibrium in this configuration at a closer separation that is unstable. For our model system we precisely map out the relations between these different configurations at a given value of angular momentum. This analysis identifies the fundamental physical constraints and limitations that exist on such systems, and has immediate applications to the stability of asteroid systems that are fissioned due to a rapid spin rate. Specifically, we find that all contact binary asteroids which are spun to fission will initially lie in an unstable dynamical state and can always re-impact. If the total system energy is positive, the fissioned system can disrupt directly from this relative equilibrium, while if it is negative the system is bound together.  相似文献   

8.
Vertically critical, planar periodic solutions around the triangular equilibrium points of the Restricted Three-Body Problem are found to exist for values of the mass parameter in the interval [0.03, 0.5]. Four series of such solutions are computed. The families of three-dimensional periodic solutions that branch off these critical orbits are computed for µ = 0.3 and are continued till their end. All orbits of these families are unstable.  相似文献   

9.
This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun–Earth, Earth–Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.  相似文献   

10.
Proceeding with our investigation into the motion of a particle influenced by the electromagnetic field of three celestial bodies of a magnetic-dipole nature we give here for the first time the analytical expressions of periodic solutions around a planar equilibrium point. These relations are expansions of the planar equations of motion in series of second order power of a parameter in the vicinity of equilibria. The above analytical expressions of periodic solutions give the first members of the family of periodic orbits which emanate from a stable equilibrium point. The whole family can then be calculated using a predictor-corrector algorithm.  相似文献   

11.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

12.
13.
At critical mass the triangular equilibria in the planar restricted three-body problem, when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, are in general unstable due to the presence of secular terms in the solutions of linearized equations of motion in the vicinity of these points. Existence of retrograde elliptic periodic orbits is established through suitable velocity components. The eccentricity of these orbits increases with the oblateness.  相似文献   

14.
The three-dimensional periodic solutions originating at the equilibrium points of Hill's limiting case of the Restricted Three Body Problem, are studied. Fourth-order parametric expansions by the Lindstedt-Poincaré method are constructed for them. The two equilibrium points of the problem give rise to two exactly symmetrical families of three-dimensional periodic solutions. The familyHL 2v e originating at L2 is continued numerically and is found to extend to infinity. The family originating at L1 behaves in exactly the same way and is not presented. All orbits of the two families are unstable.  相似文献   

15.
An alternative transfer strategy to send spacecraft to stable orbits around the Lagrangian equilibrium points L4 and L5 based in trajectories derived from the periodic orbits around L1 is presented in this work. The trajectories derived, called Trajectories G, are described and studied in terms of the initial generation requirements and their energy variations relative to the Earth through the passage by the lunar sphere of influence. Missions for insertion of spacecraft in elliptic orbits around L4 and L5 are analysed considering the restricted three-body problem Earth–Moon-particle and the results are discussed starting from the thrust, time of flight and energy variation relative to the Earth.  相似文献   

16.
We consider the general spatial three body problem and study the dynamics of planetary systems consisting of a star and two planets which evolve into 2/1 mean motion resonance and into inclined orbits. Our study is focused on the periodic orbits of the system given in a suitable rotating frame. The stability of periodic orbits characterize the evolution of any planetary system with initial conditions in their vicinity. Stable periodic orbits are associated with long term regular evolution, while unstable periodic orbits are surrounded by regions of chaotic motion. We compute many families of symmetric periodic orbits by applying two schemes of analytical continuation. In the first scheme, we start from the 2/1 (or 1/2) resonant periodic orbits of the restricted problem and in the second scheme, we start from vertical critical periodic orbits of the general planar problem. Most of the periodic orbits are unstable, but many stable periodic orbits have been, also, found with mutual inclination up to 50?–60?, which may be related with the existence of real planetary systems.  相似文献   

17.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

18.
We investigate specific homothetic solutions of then-body problem which both begin and end in a simultaneous collision of all of the particles. Under a suitable change of variables, these solutions become heteroclinic orbits, i.e., they lie in the intersection of the stable and unstable manifolds of distinct equilibrium points. Our main result is that these manifolds intersect transversely along these orbits. This proves that the homothetic solutions are structurally stable.Partially supported by NSF Grant MCS 77-00430.  相似文献   

19.
We generate families of planar periodic orbits emanating from the geostationary points, both stable and unstable. We show that, even for the unstable points, it is possible to have stable periodic orbits.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
Families of orbits of a conservative, two degree-of-freedom system are represented by an unsteady velocity field with componentsu(x, y, t) andv(x, y, t). Intrinsic stability properties depend on velocity field divergence and curl, whose dynamical evolution is determined by a matrix Riccati equation. Near equilibrium, divergence-free or irrotational fields are dynamically compatible with the conservative force field. It is shown that a necessary condition for stable periodic orbits is satisfied when the orbitaveraged divergence is zero, which results in bounded normal variations. A sufficient condition for stability is derived from the requirement that tangential variations do not exhibit secular growth.In a steady, divergence-free field, velocity component functionsu(x, y) andv(x, y) may be continuedanalytically from any initial condition, except when velocity is parallel to U or at equilibria. In an unsteady field, the orbit-averaged divergence is zero when the vorticity function is periodic. When such a field exists, initial conditions for stable periodic orbits (i.e., characteristic loci) may be determinedanalytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号