首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
强风天气下边界层结构特征   总被引:2,自引:0,他引:2  
近地层观测的强风运动表明,叠加在平均流动之上的脉动通常有两种,一种是随机的湍流脉动,还有一种具有相干结构的阵风扰动。分析表明,上层强风的剪切运动产生阵风,并向下传递能量,对近地层的通量传输起到重要作用。本文利用北京325 m气象塔、位于海拔1257 m的妙峰山测风塔和位于海拔1688 m的灵山测风塔的资料,分析了强风天气下,边界层上层出现阵风并向下传递的过程,进一步证实无论在近地层还是边界层上层,强风期间,叠加在平均流动上除了高频湍流脉动之外,还有周期为1~10分钟的阵风,即相干结构。阵风峰期有下沉运动,阵风谷期有上升运动。这些相干结构在边界层上层产生,向下运动和传播过程中受到平均气流梯度的切变作用和地面摩擦,破碎为湍流结构。边界层上层的阵风和湍流产生的动量通量向下传递,使得强风期间,边界层中阵风和湍流对通量具有同样的输送能力,对边界层中沙尘、污染物等气溶胶的传输具有重要作用。本研究为模式中进行通量输送参数化方案的修正提供了观测和理论依据。  相似文献   

2.
北京北郊冬季大风过程湍流通量演变特征的分析研究   总被引:4,自引:0,他引:4  
张宏升  刘新建  朱好 《大气科学》2010,34(3):661-668
利用中国科学院大气物理研究所325 m气象观测塔1993年12月~1994年1月大气边界层实验资料, 计算分析了大风过境过程中47 m和120 m高度湍流通量演变特征及其影响因子, 以及与风速、 稳定度等参数的关系。结果表明: 大风过程对近地面层的物质能量输送有着重要影响, 大风之前出现短时间动量上传和热量下传; 大风过程中的湍流通量数值明显高于过境后, 水平方向湍流通量数值和能量增加幅度大于垂直方向; 当风速大于临界值5 m/s时, 湍流通量与风速、 湍流动能的相关迅速增大; 湍流谱特征表现为湍流能量的低频部分增加、 湍流谱曲线变宽; 大风能强烈影响近地面层的能量收支。  相似文献   

3.
Large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL) are investigated on the basis of observations made from the 213-m tall meteorological tower at Tsukuba, Japan. Vertical profiles of wind speed and turbulent fluxes in the ABL were obtained with sonic anemometer-thermometers at six levels of the tower. From the archived data, 31 near-neutral cases are selected for the analysis of turbulence structures. For the typical case, event detection by the integral wavelet transform with a large time scale (180 s) from the streamwise velocity component (u) at the highest level (200 m) reveals a descending high-speed structure with a time scale of approximately 100 s (a spatial scale of 1 km at the 200-m height). By applying the wavelet transform to the u velocity component at each level, the intermittent appearance of large-scale high-speed structures extending also in the vertical is detected. These structures usually make a large contribution to the downward momentum transfer and induce the enhancement of turbulent kinetic energy. This behaviour is like that of “active” turbulent motions. From the analysis of the two-point space–time correlation of wavelet coefficients for the u velocity component, the vertical extent and the downward influence of large-scale structures are examined. Large fluctuations in the large-scale range (wavelet variance at the selected time scale) at the 200-m level tend to induce the large correlation between the higher and lower levels.  相似文献   

4.
A sonic anemometer-thermometer was used to measure turbulent fluxes of momentum and sensible heat and related turbulence statistics just above plant canopies in unstable conditions. The stability dependence of transport processes is presented, using observational data in a wide range of instability. The analysis of joint probability distributions of w – u, w – T, w – wu, and w – wT confirmed that just above plant canopies, downdrafts were remarkably efficient for vertical transport of momentum and scalar quantities in near neutral conditions. Furthermore, it was shown that updrafts became more efficient than downdrafts for vertical transport, especially of scalar quantities, in very unstable conditions.  相似文献   

5.
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period 10 min),gusty disturbances(1 min period 10 min)and turbulence fluctuations(period 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.  相似文献   

6.
Turbulence statistics, including higher order moments, in the surface layer over plant canopies were compared with those observed over several different surfaces, using a nondimensional height (z – d)/z 0: The values of (z – d)/z 0extend over a very wide range from 10 over plant canopies to 107 over the ocean. Several properties such as intensities of turbulence and skewness factors show a remarkable height-dependency in the air layer below (z – d)/z 0 = 102, which is supposed to be much influenced by the underlying surface. In that layer, some peculiar phenomena, such as a downward energy transport and positive flux of shear stress, are frequently observed.  相似文献   

7.
植被内部及其上方湍流场的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
尹协远  J.D.Lin 《气象学报》1988,46(2):194-201
植被内部及其上方的湍流流场对于了解植被与大气之间的动量、热量和质量交换过程极其重要。本文把高阶湍流封闭模型的Reynolds应力方程模型(RSM)应用于植被湍流的计算,得到了风速、湍流动能、Reynolds应力及能量耗散率的垂直分布,与现场观测数据比较,甚为满意。  相似文献   

8.
The turbulent flow in and above plant canopies is of fundamental importance to the understanding oftransport processes of momentum,heat and mass between plant canopies and atmosphere,and to microme-teorology.The Reynolds stress equation model(RSM)has been applied to calculate the turbulence in cano-pies in this paper.The calculated mean wind velocity profiles,Reynolds stress,turbulent kinetic energy andviscous dissipation rate in a corn canopy and a spruce forest are compared with field observed data and withWilson's and Shaw's model.The velocity profiles and Rynolds stress calculated by both models are in goodagreement,and the length scale of turbulence appears to be similar.  相似文献   

9.
Wind-flow dynamics has been extensively studied over horizontally uniform canopies, but agricultural plantations structured in rows such as vineyards have received less attention. Here, the wind flow over a vineyard is studied in neutral stratification from both large-eddy simulation (LES) and in situ measurements. The impact of row structure on the wind dynamics is investigated over a range of wind directions from cross-row to down-row, and a typical range of row aspect ratio (row separation/height ratio). It is shown that the mean flow over a vineyard is similar to that observed in uniform canopies, especially for wind directions from cross-row to diagonal. For down-row winds, the mean flow exhibits noticeable spatial variability across each elementary row-gap pattern, as the wind is channeled in the inter-row. This spatial variability increases with the aspect ratio. With down-row winds the turbulent structures are also more intermittent and generate larger turbulent kinetic energy and momentum flux. The displacement height and roughness length of the vineyard vary with the aspect ratio in a way similar to their variation with canopy density in uniform canopies. Both parameters take smaller values in down-row wind flow, for which the canopy appears more open. The analysis of velocity spectra and autocorrelation functions shows that vineyard canopies share similar features to uniform canopies in terms of turbulent coherent structures, with only minor changes with wind direction.  相似文献   

10.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

11.
The formation of cold air drainage flows in a shallow gully is studied during CASES-99 (Cooperative Atmosphere-Surface Exchange Study). Fast and slow response wind and temperature measurements were obtained on an instrumented 10-m tower located in the gully and from a network of thermistors and two-dimensional sonic anemometers, situated across the gully. Gully flow formed on clear nights even with significant synoptic flow. Large variations in surface temperature developed within an hour after sunset and in situ cooling was the dominant factor in wind sheltered locations. The depth of the drainage flow and the height of the down-gully wind speed maximum were found to be largest when the external wind speed above the gully flow is less than 2 m s-1. The shallow drainage current is restricted to a depth of a few metres, and is deepest when the stratification is stronger and the external flow is weaker. During the night the drainage flow breaks down, sometimes on several occasions, due to intermittent turbulence and downward fluxes of heat and momentum. The near surface temperature may increase by 6 ° C in less than 30 min due to the vertical convergence of downward heat flux. The mixing events are related to acceleration of the flow above the gully flow and decreased Richardson number. These warming events also lead to warming of the near surface soil and reduction of the upward soil heat flux. To examine the relative importance of different physical mechanisms that could contribute to the rapid warming, and to characterize the turbulence generated during the intermittent turbulent periods, the sensible heat budget is analyzed and the behaviour of different turbulent parameters is discussed.  相似文献   

12.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

13.
Profile and eddy-correlation (heights of 4 and 10 m) measurements performed on the Pasterze glacier (Austria) are used to study the characteristics of the stable boundary layer under conditions of katabatic and large-scale forcing. We consider cases where large-scale forcing results in a downslope (or following) ambient wind. The analysis of averaged spectra and cospectra reveals low frequency perturbations that have a large influence on the variances of temperature and horizontal wind components and also alter the cospectra of momentum and sensible heat flux. Only the spectrum of the vertical wind speed is comparable to universal spectra. The low frequency perturbations occur as brief intermittent events and result in downward entrainment of ambient air thereby producing enhanced downward sensible heat fluxes and downward as well as upward momentum fluxes with various magnitudes and timescales. After the variances were high pass filtered, the normalised standard deviations of wind speed and temperature compare favourably to findings in the literature within the range 0>z/L>0.5. For larger z/L they deviate as a result of an increased influence from low frequency perturbations and thus non-stationarity. In line with this, the turbulent kinetic energy budget (at 4 m height) indicates that production (shear) is in balance with destruction (buoyancy and dissipation) within the range 0>z/L>0.3. Non-dimensional gradients of wind speed within the range 0>z/L>0.3 have a slope of about 3.5. The scatter for the dimensionless temperature gradient is quite large, and the slope is comparable to that for wind speed gradients. For z/L>0.3 the imbalance in the turbulent kinetic energy budget grows and non-dimensional gradients for wind speed and temperature deviate considerably from accepted values as a result of increased non-stationarity. Average roughness lengths for momentum and sensible heat flux derived from wind speed and temperature profiles are respectively 1 × 10-3 m and 6 × 10-5 m, consistent with the literature. The ratio (z0h/z0m) compares to those predicted by surface renewal models. A variation of this ratio with the roughness Reynolds number is not indicated by our data.  相似文献   

14.
2010年春季北京地区强沙尘暴过程的微气象学特征   总被引:3,自引:1,他引:2  
利用北京大学校园地区PM10质量浓度观测资料、中国科学院大气物理研究所325m气象塔气象要素梯度和湍流观测资料,分析了北京地区2010年3月20~22日两次强沙尘暴过程微气象学要素和沙尘参量的时空演变以及湍流输送特征,为理解北京地区强沙尘暴天气沙尘输送规律和微气象学特征提供参考。结果表明:3月20~22日强沙尘暴过程前后不同高度温度先升后降,气压和相对湿度则相反。强沙尘暴来临时,高层风速先迅速增大,低层风速增加略有滞后,风切变明显加强,PM10浓度最大值和风速极大值出现时间较吻合。强沙尘暴过境时,不同高度向下的湍流动量输送、向上的湍流热量输送和湍流动能明显加强。与3月21日非沙尘暴日相比,强沙尘暴过程湍流动量通量增加,有利于沙尘粒子的水平和垂直输送过程;由于冷锋过境,水平热通量增大;垂直热通量因白天温度垂直梯度减小而减小,夜间因逆温层被破坏而增加;水平湍流动能对湍流动能占主要贡献,垂直湍流动能仅占水平湍流动能的10%~25%。  相似文献   

15.
The budget equations of turbulent kinetic energy and shear stress contain interaction terms of velocity-pressure and velocity-pressure gradient. These terms were estimated in the surface layer using the air pressure observed at the surface and wind velocity components over plant canopies. The magnitude of the pressure interaction terms was significantly large; it was not negligible compared with the production terms in each budget equation. The present results obtained over a rough surface also confirmed previous results that pressure terms play an important role in the turbulent kinetic energy budgets and the shear stress budget. The height dependency of nondimensional pressure terms versus (z - d)/z 0 was not clear.  相似文献   

16.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

17.
The Near-Calm Stable Boundary Layer   总被引:3,自引:3,他引:0  
For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.  相似文献   

18.
Occurrences of intermittent turbulence in very stable conditions during theCASES-99 field study near Leon, Kansas were detected at several sites separatedby horizontal distances from 1 km to 25 km using sonic anemometers, minisodarsand a laser scintillometer. Periods with significant turbulent heat fluxes wereseparated by extended quiescent periods with little or no flux, and most of theflux during a night was realized in relatively small fractions (<20%) of thetotal time. There appeared to be no relationship between this intermittencyfraction and the median z/L (z being height and L the Obukhov length)value for the night, although overall sensible heat flux values on very stablenights were significantly less than those on less stable nights. The intermittencyfraction at 7 m was found to increase with mean wind speed at 20 m and, to alesser extent, with wind shear between 20 m and 30 m. While correspondenceof turbulent episodes at two sites separated by 1 km was common, it was less common at separations on the order of 20 km. There were time periods, however, during which enhanced turbulence levels were seen nearly simultaneously at large separation distances. Turbulence episodes were found to propagate upward or downward at different times with no readily defined large-scale controlling mechanism.  相似文献   

19.
Turbulent flux measurements both above and beneath the canopy of a boreal aspen forest are described. Velocity skewness showed that, beneath the aspen canopy, turbulence was dominated by intermittent, downward penetrating gusts. Eulerian horizontal length scales calculated from integration of the autocorrelation function or spectral peaks were 9.0 and 1.4 times the mean aspen height of 21.5 m respectively. Above-canopy power spectral slopes for all velocity components followed the -2/3 power law, whereas beneath-canopy slopes were closer to -1 and showed a spectral short cut in the horizontal and vertical components. Cospectral patterns were similar both above and beneath the canopy. The Monin–Obukhov similarity function for the vertical wind velocity variance was a well-defined function of atmospheric stability, both above and beneath the canopy. Nocturnal flux underestimation and departures of this similarity function from that expected from Monin–Obukhov theory were a function of friction velocity. Energy balance closure greater than 80% was achieved at friction velocities greater than 0.30 and 0.10 m s-1, above and below the aspen canopy, respectively. Recalculating the latent heat flux using various averaging periods revealed a minimum of 15 min were required to capture 90% of the 30-min flux. Linear detrending reduced the flux at shorter averaging periods compared to block averaging. Lack of energy balance closure and erratic flux behaviour led to the recalculation of the latent and sensible heat fluxes using the ratio of net radiation to the sum of the energy balance terms.  相似文献   

20.
Boundary-layer flow over very rough surfaces is poorly understood so the applicability of standard micrometeorological theory is uncertain. This study presents observations of the turbulent fluctuations of meteorological parameters over a suburban area. Even though the height of measurement is considered to be close to the junction between the inertial and roughness sub-layers, the wind and temperature spectra and the momentum and sensible heat flux cospectra are in good agreement with reference data from smoother surfaces. Recommendations are made concerning site requirements, height of measurement and averaging times for the study of turbulence and turbulent fluxes over suburban terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号