首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the summer in the Yellow Sea and East China Sea, the resuspension of the bottom sediment is obstructed by strong stratification and, as a result, the concentration of total suspended sediment (TSS) can be used as an excellent tracer for Changjiang Diluted Water (CDW). To analyze the spatial and temporal variations of the CDW distribution, the monthly mean TSS from Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color data are constructed and are converted to salinity using the relationship between salinity observed from AQUARIUS and TSS. The process produces the detailed horizontal distribution of salinity with very high resolution (1 km). From monthly mean salinity map from 2002 to 2012 in July and August, the expansion patterns of CDW are analyzed. The southerly wind in July and southeasterly wind in August transport the CDW eastward and northeastward, respectively. It is found that the yearly variation of the expansion of CDW toward the southern sea area of Korea is mostly due to the variation of southerly wind and the fluctuations of fresh water discharge into the Changjiang estuary show relatively little impact on the eastward extend of CDW. When 11-year mean (from 2002 to 2012) salinity map in August is compared with World Ocean Atlas 2013, it is revealed that wind in August strengthened six times from 1994 and it causes the expansion of CDW extended 150 km further eastward.  相似文献   

2.
渤黄东海混合层化演变规律的研究进展   总被引:9,自引:0,他引:9  
较详细地综述了渤黄东海混合层化演变过程与规律的研究进展情况,主要包括:混合和层化过程的分布规律与季节变化特性,采用水温垂直剖面自相关函数的半经验预报模式,动力学和热力学的数值预报模式。  相似文献   

3.
The Current System in the Yellow and East China Seas   总被引:18,自引:1,他引:18  
During the 1990s, our knowledge and understanding of the current system in the Yellow and East China Seas have grown significantly due primarily to new technologies for measuring surface currents and making high-resolution three-dimensional numerical model calculations. One of the most important new findings in this decade is direct evidence of the northward current west of Kyushu provided by satellite-tracked surface drifters. In the East China Sea shelf region, these recent studies indicate that in winter the Tsushima Warm Current has a single source, the Kuroshio Branch Current in the west of Kyushu, which transports a mixture of Kuroshio Water and Changjiang River Diluted Water northward. In summer the surface Tsushima Warm Current has multiple sources, i.e., the Taiwan Warm Current, the Kuroshio Branch Current to the north of Taiwan, and the Kuroshio Branch Current west of Kyushu. The summer surface circulation pattern in the East China Sea shelf region changes year-to-year corresponding to interannual variations in Changjiang River discharge. Questions concerning the Yellow Sea Warm Current, the Chinese Coastal Current in the Yellow Sea, the current field southwest of Kyushu, and the deep circulation in the Okinawa Trough remain to be addressed in the next decade. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Seasonal variability of surface and subsurface thermal/haline fronts in the Yellow/East China Seas (YES) has been investigated using three-dimensional monthly-mean temperature and salinity data from U.S. Navy’s Generalized Digital Environmental Model (Version 3.0). The density-compensated Cheju-Yangtze Thermal/Haline Front has (northern and southern) double-tongues. The northern tongue is most evident throughout the depth from December to April. The southern tongue is persistent at the subsurface with conspicuous haline fronts. The thermal (haline) frontal intensity of the northern tongue is controlled mainly by the temperature (salinity) variation on the shoreward (seaward) side of the front. The cold water over the Yangtze Bank is influential in generating the southern tongue and intensifying the Tsushima Thermal Front. The year-round Cheju-Tsushima Thermal Front is evident throughout the depth and intensifies from July to December. The northern arc of the Yangtze Ring Haline Front is manifest in spring and is sustained until summer, whereas the southern one is fully developed in summer because of eastward migration of the Yangtze Diluted Water. The area showing strong frontal intensity in the Chinese Coastal Haline Front shifts seasonally north and south along the Zhejiang-Fujian coast. The Generation and evolution of YES fronts are closely associated with YES circulation (inferred from the linkage of the water masses). Moreover, the subsurface temperature/salinity evolution on the fronts in the Yellow Sea differs from that in the East China Sea owing to local factors such as wintertime vertical mixing and a summertime strong thermocline above the Yellow Sea Bottom Cold Water.  相似文献   

5.
吴磊  王彬  潘锡山  韩雪 《海洋通报》2020,39(6):657-668
本文分析了两套融合海表温度产品 (MGDSST 和 OISST) 在 1982—2019 年间的时空特征,并结合现场观测数据,分别对其在渤黄东海的适用性进行初步评估。结果表明: (1) MGDSST 和 OISST 两套融合产品在渤黄东海浅水海域差异显 著,且差异随水深的减小迅速增大,在水深大于 100 m 的海域两者差异较小。 (2) MGDSST 夏季多年平均值高于 OISST 约0.3 益,而冬季多年平均值则低于 OISST 约 0.23 益。 (3) 夏季 MGDSST 增温幅度显著强于 OISST,冬季则相反。 (4) EOF分析结果显示 MGDSST 在夏季的韩国沿岸流域和冬季的南黄海东部海域的空间变率显著强于 OISST,两者的时间系数则具有较好的对应关系。 (5) 通过与 KODC 现场观测数据的对比,发现 MGDSST 在渤黄东海海域表现要优于 OISST。本研究为融合海表温度产品在中国近海的适应性研究提供了理论依据。  相似文献   

6.
Synoptic distributions of thermal surface mixed layer and thermocline were identified using four airborne expendable bathythermograph (AXBT) surveys (September 1992 and February, May, and September 1993) in the southern Yellow and East China Seas. Seasonality and a dominant driving mechanism of the surface mixed layer were examined. The dominant driving mechanisms differ between seasons and between on-shelf and off-shelf regimes. Currents, eddies, and migration of bottom cold waters (on the shelf) also affect the surface mixed layer. Thermocline thickness, temperature difference from thermocline top to bottom, and thermocline intensity in warm seasons were measured, and their synoptic features were also discussed.  相似文献   

7.
Accurately estimating the mean and extreme wave statistics and better understanding their directional and seasonal variations are of great importance in the planning and designing of ocean and coastal engineering works. Due to the lack of long-term wave measurement data, the analysis of extreme waves is often based on the numerical wave hind-casting results. In this study, the wave climate in the East China Seas (including the Bohai Sea, the Yellow Sea and the East China Sea) for the past 35 years (1979–2013) is hind-casted using a third generation wave model – WAMC4 (Cycle 4 version of WAM model). Two sets of reanalysis wind data from NCEP (National Centers for Environmental Prediction, USA) and ECMWF (European Centre for Medium-range Weather Forecasts) are used to drive the wave model to generate the long-term wave climate. The hind-casted waves are then analysed to study the mean and extreme wave statistics in the study area. The results show that the mean wave heights decrease from south to north and from sea to land in general. The extreme wave heights with return periods of 50 and 100 years in the summer and autumn seasons are significantly higher than those in the other two seasons, mainly due to the effect of typhoon events. The mean wave heights in the winter season have the highest values, mainly due to the effect of winter monsoon winds. The comparison of extreme wave statistics from both wind fields with the field measurements at several nearshore wave observation stations shows that the extreme waves generated by the ECMWF winds are better than those generated by the NCEP winds. The comparison also shows the extreme waves in deep waters are better reproduced than those in shallow waters, which is partly attributed to the limitations of the wave model used. The results presented in this paper provide useful insight into the wave climate in the area of the East China Seas, as well as the effect of wind data resolution on the simulation of long-term waves.  相似文献   

8.
Simulation of Suspended Sediment in the Yellow and East China Seas   总被引:1,自引:0,他引:1  
Described is an initial attempt to simulate the suspended sediment dynamics relating to tidal and wave forcing during summertime in June 1980 and August 1981 for the Yellow and East China Seas continental shelf. The cohesive/non-cohesive sediment resuspension and movement generated by the interaction between current and wave are modeled by use of ECOMSED and WAM Cycle 4. Model results are compared with observations in US-China Marine Sedimentation Dynamics Program performed for 1980-81 at off the Changiiang estuary. The main features of simulations show that suspended sediment concentrations during the summer decreased markedly offshore as observed during the simulation periods. As for some discrepancies for the mouth of the estuary with high river discharges, i.e., the Changjiang River, the model did not properly reproduce the over-mixing situation in the summer; thus distinct vertical concentration variation in this local region is not agreeable with observation. However, general dispersal patterns of suspended sediment movement seem to be agreeably reproduced for the nearshore shallow region. Some of the procedures of simulation and results are presented and discussed.  相似文献   

9.
秋季黄海和东海海域沉降颗粒物及其地球化学组成   总被引:2,自引:0,他引:2  
水体中的颗粒物对于海水中物质的迁移有着重要的作用,已有的研究表明,海水中溶解态元素和颗粒物之间的相互作用决定了微量元素和常量元素在海洋中的分布[1].虽然近岸水体只占全球海洋表面的小部分,但河流搬运的陆源物质最终将通过近岸水体进入外海,目前普遍认为海岸带在物质迁移过程中起着极为重要的过滤器作用[2~3].黄海和东海作为具有宽阔陆架的边缘海,每年大量来自陆地的物质在这里沉积、迁移,其海域内的沉降颗粒物不仅是陆源入海物质的主要组成部分,也是人类活动入海污染物的主要载体.  相似文献   

10.
海表冷暖水舌被广泛应用于定性描述海表水温(SST)的空间分布特征,但缺少定量的表述和研究。本文以海表冷暖水舌轴线的空间位置和温度为指标,用2006—2014年逐年冬季(2月)的遥感SST数据,分析了渤海、黄海和东海冬季的冷暖水舌的空间分布和年际变化,并探讨了其形成机理。结果表明,渤海、黄海和东海冬季存在2条冷水舌和6条暖水舌。水舌位置的EOF前三个模态(73.4%)基本解释了其年际变化,其中空间第一模态呈同相分布,在东海中部及西部的变动幅度最大;空间第二和第三模态主要呈反相分布,分别在九州岛南部及黄海区域变动幅度较大。水舌温度的EOF第一模态(69.6%)呈空间同相分布,变动幅度在渤、黄海较大,在东海南部较小。水舌位置和水舌温度都存在准2~3 a周期的年际变化,但只有水舌位置EOF第二模态通过95%水平的显著性检验。海表相对较均匀的负净热通量(海洋向大气输送热量),使得浅水区SST比深水区下降得快,水深(上混合层深度)是冷暖水舌形成的原因之一;平流热输送的空间差异显著且在冷暖水舌区域中的作用最大,在冷舌区域起到降温作用,在暖舌区域起到增温作用,平流热输送是冷暖水舌形成的主要原因。  相似文献   

11.
1 Indroduction The coastal zone and continental shelf area is an important region in the global biogeochemical cycle of nutrients in the ocean. This portion of the global ocean interacts closely with the continents, atmosphere and the open ocean in a comp…  相似文献   

12.
The monthly water mass variations in the Yellow Sea and the East China Sea are investigated using over 40 years of historical temperature and salinity observations via a cluster analysis that incorporates geographical distance and depth separation in addition to the temperature and salinity. Results delineate monthly variations in the major water masses and provide some insight into formation mechanisms and intermixing. The major water masses include the Kuroshio-East China Sea water (KE), the Yellow Sea surface water (YSS) and bottom cold water (YSB), mixed water (MW), and coastal water (CW). The distribution of the KE water mass reveals the intrusion pattern into the area west of Cheju. A separate mixed water type appears between the KE water mass and the Yellow Sea water masses during winter. The formation mechanism of the YSB appears to be the surface cooling and active mixing in winter. In the East China Sea, during summer, surface water is differentiated from the subsurface water while there is no differentiation during winter. In the Yellow Sea, a three layer system exists in the summer and fall (May–November) while a two layer system exists during the rest of the year. A fresh water mass generated by Yangtze River discharge (YD) is present over the northern East China Sea and the southern Yellow Sea during summer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Four surveys of airborne expendable bathythermograph with horizontal spacing of about 35 km and vertical spacing of 1 m extending from the surface down to 400 m deep are used to analyze thermal finestructures and their seasonality in frontal zones of the southern Yellow Sea and the East China Sea. Finestructure characteristics are different not only among fronts but also along the same front, implying different mixing mechanisms. Summer thermocline intrusions with thickness from few to 40 meters, generated by the vertically-sheared advection, are identified along the southern tongue of the Cheju-Yangtze Front (especially south of Cheju Island). The finestructures south of the Yangtze Bank (i.e. the western tip of the southern tongue) produced by strong along-frontal currents are not as rich as elsewhere in the southern tongue. The Cheju-Tsushima Front presents mixed finestructures due to confluent currents from various origins. The irregular-staircase finestructures in the Kuroshio region (below the seasonal thermocline), driven by double-diffusive mixing, show seasonal invariance and vertical/horizontal coherence. The strength of mixing related to finestructure is weaker in the Kuroshio region than in the Cheju-Tsushima Front or south of Cheju Island. The profiles in the Tsushima Warm Current branching area show large (∼50 m thick), irregular-staircase structures at the upper 230 m depth, which coincides roughly with the lower boundary of the maximum salinity layer. The finestructure at depths deeper 230 m is similar to that in the Kuroshio region. The possible mechanisms for generating the finestructures are also discussed.  相似文献   

14.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

15.
Modern (last 100 yr) accumulation rates of shelf mud deposits in the Yellow and East China Seas were investigated using the distribution of excess 210Pb (210Pbex) in sediment core samples. Compilation and merger of new and previously published data helped clarify sediment accumulation in these seas. The estimated accumulation rates, together with data of suspended sediment concentrations, provided findings on the sediment budget, origin, and transport pathway of the mud deposits. The overall accumulation distribution in the Yellow and East China Sea shelf revealed a general, cross-shelf decreasing trend along the sediment dispersal system away from the rivers, except for the South Sea (SSM) and southeastern Yellow Sea (SEYSM) mud patches found along the Korean coast. Notably, 210Pbex activity profiles within the SSM and the SEYSM yielded a relatively high accumulation rate of 2-5 mm/yr, implying a sedimentation rate of 4-15 × 107 tons per year in this coastal zone. Such an annual accumulation rate is about one order of magnitude greater than the total sediment discharge (6-20 × 106 tons/yr) from Korean rivers, suggesting an additional offshore source. The distribution pattern of the well-defined suspended plume clearly showed the possible transport and exchange of fine-grained sediments between the ECS shelf and the coastal area of Korea, especially during winter. Such a high accumulation in Korean coastal areas is attributable to the sediments supplied from the mud deposit of the ECS (i.e., SWCIM), with origins in Chinese rivers. Therefore, the Korean coastal area may be an important sink for some of Chinese river sediments being transported from the south by the Yellow Sea Warm Current.  相似文献   

16.
东海、南黄海浮游植物粒级结构及环境影响因素分析   总被引:7,自引:0,他引:7  
对粒径分级叶绿素a含量进行分析,探讨了南黄海和东海海域2000年秋季表层浮游植物的粒级结构特征及其环境影响因素.在整个调查海域范围内,叶绿素a平均含量为0.72 mg*m-3,各粒级浮游植物叶绿素a含量对叶绿素a总量的贡献有显著差异,小型(Microplankton,>20 μm)、微型(Nanoplankton,3~20 μm)和微微型(Picoplankton,0.45~3 μm)浮游植物的贡献率分别为31.2%,49.0%和19.8%.小型浮游植物主要分布在江苏沿岸和长江口附近;微型浮游植物在整个海域的分布较均匀,以浙江沿岸和南黄海东部为高值区;微微型浮游植物主要分布在南黄海中部和东海东南部.通过浮游植物粒径分级叶绿素a和环境因子的相关性分析,发现在调查海域营养盐与浮游植物叶绿素a的相关系数随着浮游植物粒径的增大而从负逐渐变正,说明高的营养盐含量区域较大粒径的浮游植物占有较大优势.依据浮游植物粒径分级叶绿素a和环境因子对调查站位进行的聚类分析结果和海域水团的分布以及卫星遥感图显示的水色差异之间有密切联系,聚类分析方法是研究浮游植物分布和环境因子之间关系的一种有效方法.  相似文献   

17.
本文利用中国东部陆架海不同季节的航次观测数据与HYCOM模式数据,分析了HYCOM模式输出的水体温盐数据在中国东部陆架海的适用性,并探讨了中国东部陆架海表底层温盐锋面的时空变化及其对细颗粒沉积物输运和沉积的影响。研究结果表明,中国东部陆架海表、底层温度锋(盐度锋)的分布趋势基本一致(不考虑冲绳海槽以东的海域),但底层锋面的强度和锋区范围明显大于表层。锋面的位置很好的体现了海区流系的基本格局。表、底层温度锋面基本处于几大水团的交界处,说明表、底层温度锋面的分布与研究区环流和水团配置情况密切相关。而表、底层盐度锋面的分布则与研究区入海径流、沿岸流以及暖流等的分布密切相关。此外,对比锋面与中国东部陆架各泥质沉积区的位置可以发现,研究区温盐锋面的空间分布和季节变化对于泥质沉积区的形成具有重要的控制作用。  相似文献   

18.
Upper Ocean Sensitivity to Wind Forcing in the South China Sea   总被引:2,自引:0,他引:2  
The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) has been used to investigate the sensitivity of the upper South China Sea (SCS) circulation to various atmospheric wind forcing products. A 1/16° 6-layer, thermodynamic Pacific Ocean north of 20°S version of NLOM has been integrated using observed climatological monthly mean winds (Hellerman and Rosenstein, 1983) and climatologies based on two atmospheric prediction models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP). ECMWF products include the 10 meter winds (at both 1.125° and 2.5° resolution) and surface stresses (1.125°). The NCEP forcing (1.875°) is a surface stress product. Significant differences exist in the wind stress curl patterns and this is reflected in the upper ocean model response, which is compared to observational data. The model experiments suggest the generation of the West Luzon Eddy is controlled by positive wind stress curl. The degree of Kuroshio intrusion into the SCS, however, is not affected by wind stress curl but is governed by the coastline geometry of the island chain within Luzon Strait. The summertime offshore flow from the Vietnamese coast is present in all simulations but the dipole structure on either side of the jet is variable, even among experiments with similar wind stress curl patterns. The ECMWF surface stresses exhibit spurious coastal wind stress curl patterns, especially in locations with significant orographic features. This manifests itself in unrealistic small scale coastal gyres in NLOM. High resolution basin-scale and coastal models might be adversely affected by these stresses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
于2007-01-02对黄东海溶解有机碳(DOC)进行采样并用高温催化氧化法进行测定,分析了其质量浓度和平面分布特征。结果表明,DOC的质量浓度范围为0.440~2.491mg/L,平均质量浓度为(0.967±0.284)mg/L;DOC的平面分布呈现近岸高外海低的特征,近岸高值主要集中在长江口以南海域,主要受陆源输入的影响;外海DOC高值区主要集中在28°N以南,126°E以西的海域,来源于浮游植物的初级生产;东海东南部为DOC的低值区,主要受贫营养的黑潮水控制。垂直方向上,DOC由表到底变化较小,表层和10m层受生物活动影响质量浓度相对较高,底层高值主要来自于沉积物再悬浮的作用。  相似文献   

20.
台风过程可使海洋悬浮物浓度的分布在短时间内发生极大变化,并影响海洋生态环境以及海洋资源的分布。受台风期间海洋观测数据的限制,台风过程对海洋悬浮物浓度的影响尚不明确。本文利用GOCI (Geostationary Ocean Color Imager,GOCI)卫星遥感数据,以2019年8月台风“利奇马”为例,对其过境前后东中国海表层悬浮物浓度的时空变化进行了定量研究。结果表明,台风“利奇马”对闽浙沿岸的影响程度最大,使悬浮物质量浓度中高值(≥5 mg/L)覆盖面积和浓度平均值分别增大92%和62%,影响持续时间为4 d;对长江口附近海域的影响程度次之,使悬浮物浓度中高值覆盖面积和浓度平均值分别增大19%和17%,影响持续时间为3 d;对苏北浅滩的影响程度最小,悬浮物质量浓度中高值覆盖面积变化不大,但浓度平均值增大了30%,影响持续时间为4 d。研究结果表明卫星遥感数据可以量化台风过程对东中国海表层悬浮物浓度的影响,弥补极端天气条件下无法进行现场观测的不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号