首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

2.
Sequence stratigraphy analysis of high resolution seismic profiles (Geopulse, Uniboom and 3.5 kHz) of late Pleistocene-Holocene sediments has been carried out on five sectors of the Spanish continental margin. Four types of depositional settings are distinguished in these sectors: (1) low subsident ramps (Alborán Margin-Cádiz Gulf); (2) high subsident (2m/kyr) ramps (Alicante-Valencia); (3) “Ria”-type morphology on the Atlantic passive margin (Ria de Muros); and (4) fault-scarp morphology systems with subsidence (Balearic Margin). A Type 1 sequence is interpreted in all these sectors, being composed of lowstand systems tract, transgressive systems tract and highstand systems tract. This conforms to the basic concepts of sequence stratigraphy and each systems tract correlates with a particular part of the last eustatic hemicycle. Characteristic shelf features such as terraces, terraces with beach deposits and progradational sediment wedges evidence a complex stacking of lesser sub-sequences in all the systems tracts, which must be related to very-short period sea-level stillstands and fall. We propose a very high resolution sequence stratigraphy model in which the last sea-level hemicycle is punctuated by: “P” cycles (4500 years), which give rise to the neo-glacial events; “h” cycles (2200-950 years), and “c” cycles (500-50 years). These cycles interact with each other, thus establishing the placing of the high and low sea levels.

This attention to detail: (1) explains sedimentary evolution on both the shelf and upper slope during late Pleistocene-Holocene time; (2) illustrates some departures from the classical sequence stratigraphy model; and (3) also demonstrates that the late Pleistocene-Holocene eustatic curve is not one simple transgression but is modulated by three differing-period cycle groups below the Milankovitch band. Our model is delimited by fluctuating sea level during Pleistocene-Holocene times. Such features should be identifiable on any continental margin. However, localized features occur due to subsidence and continental shelf morphology which determ ine the location and depth of sedimentary bodies generated in each eustatic cycle.  相似文献   


3.
4.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   

5.
We studied the effect of four types of fronts, the coastal front, the middle front, the shelf partition front and the shelf break front on the quantitative distribution and the composition of plankton communities in the Pribilof area of the eastern Bering Sea shelf in late spring and summer of 1993 and 1994. The coastal fronts near St. Paul and St. George Islands and the coastal domains encircled by the fronts featured specific taxonomic composition of planktonic algae, high abundance and production of phytoplankton, as well as large numbers of heterotrophic nanoplankton. The coastal fronts also were characterized by high values of total mesozooplankton biomass, high concentrations of Calanus marshallae, as well as relatively high abundances of Parasagitta setosa and Euphausiacea compared to surrounding shelf waters. We hypothesize that wind-induced erosion of a weak thermocline in the inner part of the coastal front as well as transfrontal water exchange in subthermocline layers result in nutrient enrichment of the euphotic layer in the coastal fronts and coastal domains in summer time. This leads to prolonged high primary production and high phytoplankton biomass. In this paper a new type of front—the shelf partition front located 45–55 km to the north-east off St. Paul Island—is described, which is assumed to be formed by the flux of oceanic domain waters onto the shelf. This front features a high abundance of phytoplankton and a high level of primary production compared to the adjacent middle shelf. Near the southwestern periphery of the front a mesozooplankton peak occurred, composed of C. marshallae, with biomass in the subthermocline layer, reaching values typical for the shelf break front and the highest for the area. High abundance of phyto- and zooplankton as well as heterotrophic nanoplankton and elevated primary production were most often observed in the area adjacent to the shelf break front at its oceanic side. The phyto- and mesozooplankton peaks here were formed by oceanic community species. The summer levels of phytoplankton numbers, biomass and primary production in the shelf break frontal area were similar to those reported for the outer and middle shelf during the spring bloom and the coastal domains and coastal fronts in summer. In the environment with a narrow shelf to the south of St. George Island, the mesozooplankton peak was observed at the inner side of the shelf break front as close as 20 km from the island shore and was comprised of a “mixed” community of shelf and oceanic species. The biomass in the peak reached the highest values for the Pribilof area at 2.5 g mean wet weight m−3 in the 0–100 m layer. Details of the taxonomic composition and the numbers and production of phytoplankton hint at the similarity of processes that affect the phytoplankton summer community in the coastal domains of the islands, at the coastal fronts, and at the oceanic side of the shelf break front. The middle front was the only one that had no effect on plankton composition or its quantitative characteristics in June and July. Location of a variety of frontal productive areas within 100 km of the Pribilof Islands creates favorable foraging habitat for higher trophic level organisms, including sea birds and marine mammals, populating the islands.  相似文献   

6.
The northern Portuguese shelf, between 41°N and 42°N, is characterised by the presence of a mid-shelf mud deposit, the Douro Mud Patch (DMP). Observations conducted between July 1996 and June 1999 under the framework of project OMEX II–II, are used to examine the impact of the dynamic processes in the lower water column, particularly on the DMP. The typical wave conditions observed during the winter maintain a highly energetic environment, capable of promoting the erosion of fine sediments at mid-shelf depths. However, the bottom nepheloid layers generated beneath these waves only extend a few meters above the bottom and are contained within rocky outcrops with similar heights that fringe the outer shelf. Each year there are about ten storms, mostly associated with southerly winds that create downwelling conditions over the shelf. The waves associated with these storms produce shear velocities over 3 cm/s at mid-shelf and bottom nepheloid layers which extend a few tens of meters above the bottom and spread offshore, over the outer shelf and upper slope. A rough estimate suggests that these events account for an offshore export of about 20×106 kg of fine sediments each year (equivalent to 1–2% of sediments trapped at DMP).  相似文献   

7.
《Marine Geology》2003,193(1-2):61-91
The Gargano subaqueous delta formed on the eastern and southeastern sides of the Gargano promontory, in the western Adriatic. This subaqueous deposit represents the southernmost portion of the late-Holocene highstand systems tract (HST) growing along the western side of the Adriatic as an extensive wedge of deltaic and shallow-marine mud. The late-Holocene HST rests above a regional downlap surface that marks the time of maximum landward shift of the shoreline attained around 5.5 cal. kyr BP, at the end of the late-Pleistocene–Holocene sea-level rise. High-resolution seismic–stratigraphic and tephra correlation indicate the presence of a thin basal unit recording condensed deposition between 5.5 and 3.7 cal. kyr BP over much of the basin. Above this unit, sediment accumulation rates increased to high values (as much as 1.5 cm yr−1) reflecting the stabilisation of relative sea level and the forcing from high frequency climatic or anthropogenic changes affecting river dynamics. The late-Holocene mud wedge, of which the Gargano subaqueous delta is a significant component, reaches up to 35 m in thickness and has a volume of ca 180 km3. The shore-parallel thickness distribution of the mud wedge reflects the dominant oceanographic regime of the basin and the asymmetric location of the mostly western sediment sources (with a combined modern delivery of 51.7×106 t yr−1 of mean suspended load). In sections perpendicular to the coast the late-Holocene mud wedge appears composed of forestepping clinoforms with gently dipping foresets (typically 0.5°). The Gargano subaqueous delta is characterised by a submarine topset in water depths shallower than 25–28 m, and accounts for about 1/7th of the total volume of the late-Holocene mud wedge, despite the absence of direct river supply to the Gargano area. In the area of maximum interaction between shore-parallel currents and basin morphology, progradation occurs onto a flat and barren bedrock outcrop in about 50–80 m water depth. The rapid transition from a thickness of 30 m of late-Holocene mud to nil is a good indication of the role of southward-flowing bottom-hugging shelf currents in causing the redistribution of sediment along the Adriatic inner shelf. Additional evidence of this regime comes from: (1) the most recent sigmoid (defined at seismic–stratigraphic scale) deposited since the onset of the Little Ice Age, showing a shore-parallel thickness distribution and a main depocentre to the southeast of the Gargano promontory; (2) the maximum values of sediment accumulation rates over the last century (documented by 210Pb measurements) defining a narrow shore-parallel belt immediately seaward of the depocentre of the most recent sigmoid. The Gargano subaqueous delta grows from the outbuilding of progressively younger progradational sigmoids that tend to parallel the previous ones. The Gargano subaqueous delta differs from other documented late-Holocene subaqueous deltas because its growth reflects: (1) sediment transport dominated by bottom currents sub-parallel to the strike of the composing clinoforms; (2) a complex supply regime including the Po delta (350 km to the north) and several coalescing Apennine rivers acting as ‘line source’; (3) several alternating intervals of enhanced outbuilding and condensed deposition; and (4) an in-phase growth of the most recent sigmoid with the major progradation of the Po delta during the Little Ice Age.  相似文献   

8.
A set of hydrographic surveys were carried out in the Ría of Vigo (NW Spain) at 2–4 d intervals during four 2–3 week periods in 1997, covering contrasting seasons. Residual exchange fluxes with the adjacent shelf were estimated with a 2-D, non-steady-state, salinity–temperature weighted box model. Exchange fluxes consist of a steady-state term (dependent on the variability of continental runoff) and a non-steady-state term (dependent on the time changes of density gradients in the embayment). More than 95% of the short-time-scale variability of the exchange fluxes in the middle and outer ría can be explained by the non-steady-state term that, in turns, is correlated (R2>75%) with the offshore Ekman transport. Conversely, 96% of the variability of exchange fluxes in the inner ría rely on the steady-state term. The outer and middle ría are under the direct influence of coastal upwelling, which enhances the positive residual circulation pattern by an order of magnitude: from 102to 103 m3s−1. On the contrary, downwelling provokes a reversal of the circulation in the outer ría. The position of the downwelling front along the embayment depends on the relative importance of Ekman transport (Qx, m3s−1km−1) and continental runoff (R, m3s−1). When Qx/ R>7±2 the reversal of the circulation affects the middle ría. Our results are representative for the ‘Rías Baixas’, four large coastal indentations in NW Spain. During the upwelling season (spring and summer), 60% of shelf surface waters off the ‘Rías Baixas’ consist of fresh Eastern North Atlantic Central Water (ENACW) upwelled in situ. The remaining 40% consists of upwelled ENACW that previously enters the rías and it is subsequently outwelled after thermohaline modification. During the downwelling season (autumn and winter), 40% of the warm and salty oceanic subtropic surface water, which piled on the shelf by the predominant southerly winds, enters the rías.  相似文献   

9.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

10.
To increase our understanding of the roles of black carbon (BC), a highly sorptive and recalcitrant material, we measured BC concentrations and fluxes in marine particulate organic carbon (POC) out of the water column in the Gulf of Maine (GoM), a representative coastal area downwind of important BC sources of the Northeastern United States. Concentrations ranged from < 0.1 to 16 μg/L in the spring and late summer, typically contributing between 1 and 20% of the POC. Water-column export fluxes were near 10 gBC/m2∙yr. These observations suggest that (a) up to 50% of the “molecularly uncharacterized” POC in this region's seawater is combustion-derived BC, and (b) the “bioavailabilities” of hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs) would be influenced substantially by sorption to BC. The observed BC spatial distributions imply that a large part of the BC was carried offshore by wind and that much of it is accumulated in the coastal sediments. On a global scale, these results suggest the GoM and other coastal areas with similar BC loadings accumulate significant amounts of highly recalcitrant organic carbon that remineralizes on geological time scales in the world's oceans.  相似文献   

11.
During the past 100 years, sea-level appears to have risen by 10–15cm, probably due to the combined effects of thermal expansion of ocean-surface waters and net melting of glaciers and ice caps, associated with a small increase in global temperatures. This trend will almost certainly continue and accelerate if steadily increasing levels of carbon dioxide and other “greenhouse” gases in the atmosphere cause warming of the magnitude widely predicted by climate modellers. Rising air temperatures will cause increased melting from glaciers and ice caps, and rising sea-water temperatures will cause thermal expansion of the oceans. Moreover, warmer ocean waters could melt and weaken the many floating ice shelves that surround Antarctica, permitting increased ice discharge from glaciers that flow into them. All of these factors would cause sea-level to rise, and this paper presents and estimate of the total sea-level rise that could occur during the next century.If, as predicted by many climate models, global temperatures increase by an average of about 3°C, there is a good probability that sea-level will rise approximately 1m by the year 2100. Ultimately, such a rise would become very apparent to coastal populations, but initial change would be slow. Consequently, it is important to devise and “early warning system” for prompt detection of changes that will precede a detectable rise in sea level. These include: surface temperatures on land, oceans and ice sheets; sea-ice distribution; extent of summer melting on the polar ice sheets; areal extent and surface elevations of the ice sheets in Greenland and Antarctica. All of these parameters can be measured from space by satellites that are operating now or are planned for launch during the next few years  相似文献   

12.
We present evidence for strong hydrothermal activity in the eastern Manus Basin (depth: 1700–2100 m), the existence of large scale triple-layered buoyant plumes at depths of 1100 m (“shallow plume”), 1700 m (“deep plume”), and 1400 m (“middle plume” with less extent than the other two plumes) that were revealed from water column anomalies of CH4, Mn, Al and pH observed in November to December 1990. Judging from the horizontal distribution of these parameters, the deep plume seems to originate from two distinct hydrothermal sites (eastern and western sites) in the research area, the eastern site being visually ascertained with deep-tow observations at the same time. The CH4/Mn ratio (mol mol−1) of the deep plume (0.02–0.05) is the lowest yet observed in hydrothermal plumes. The order of magnitude difference of CH4/Mn ratios between the shallow plume and the deep plume suggests that different kinds of fluid-rock interaction occurred to make the hydrothermal end members for the deep and shallow plumes. The shallow plume, which had an areal extent of more than 50 km, may be an episodic “megaplume”, because it was not recognized in the previous CH4 profiles in 1986, and because it has a similar CH4/Mn ratio as the megaplume observed in the North Fiji Basin. We found that the eastern deep plume is characterized by enormously high aluminium concentrations (0.6– 1.5 μmol kg−1), pH anomalies (0.1) and high Al/Mn ratios (10–17). The endmember fluid for the eastern deep plume may have an unusually low pH value to dissolve this much aluminum during fluid-rock interaction, or this plume may originate from an eruption-influenced fluid.  相似文献   

13.
The timing and intensity of the effects of the 1997–98 El Niño on sea-surface temperature (SST) and coastal sea level along the US west coast are examined using in situ time-series measurements, and the effects on upper ocean currents on the continental shelf and slope off Oregon and northern California are examined using repeated shipborne ADCP transects, a mid-shelf mooring off Newport Oregon and an HF surface current radar. An initial transient positive anomaly was observed in both adjusted sea level and SST during May–June 1997, followed by anomalously high coastal sea levels, generally strongest during September 1997 through February 1998 and abruptly returned to normal in late February 1998, and by positive temperatures anomalies over the mid-shelf that persisted longer, into April 1998. Low-frequency coastal sea-level anomalies propagated poleward at 2.1 m/s. Poleward flow over the shelf and slope was enhanced at most depths during the El Niño, compared with following years. Northward currents in the upper 12 m over the continental shelf off Newport, Oregon averaged 13.7 cm/s stronger during August 1997 through February 1998 than during the same period the following year. Enhanced poleward flow was present at all latitudes sampled during November 1997 and February 1998, particularly over the continental slope. These transects also provided clear views of a fall/winter equatorward undercurrent, which was both strongest and had the most alongshore similarity of form, during the ENSO. Finally, subsurface-intensified anticyclonic eddies originating in the poleward undercurrent appear to be a recurrent feature of the circulation off Newport late in the upwelling season.  相似文献   

14.
From the results of a parameter optimization process based on a “minimum feasible volume” criterion, it is shown that the optimum shape for a transatlantic, deep-diving, autonomous submersible is a “low drag” hull shape with a displaced volume of 4.4 m3, a length of 5.97 m and a maximum diameter of 1.33 m. Calculations show that a vehicle of these dimensions, travelling in a minimum drag “cruise” configuration at a depth of 3000 m, say, and at a velocity of 2.5 m/sec could have a maximum range of 7000 km provided the “hotel” power consumption is kept low.  相似文献   

15.
An ion exchange technique has been used to determine the copper complexing capacity (CuCC) of strong organic complexing agents at 21 stations across the continental shelf of the southeastern United States and in the western Sargasso Sea. The concentration of dissolved organic carbon (DOC) and total particulate materal (TPM), two pools of potential complexing agents, was also measured at each station. The CuCC ranged from 0.014 to 1.681 μM Cu dm−3 on the inner shelf, from 0.043 to 0.095 μM Cu dm−3 in mid and outer shelf waters, and from < 0.010 to 0.036 μM Cu dm−3 at the Sargasso Sea stations. The correlation between CuCC and both DOC and TPM is highly significant (α < 0.01). Two synoptic surveys of the distribution of DOC and TPM across the shelf showed that DOC ranges from > 3 mg C dm−3 nearshore to <1 mg C dm−3 offshore and that TPM ranges from > 50 mg dm−3 nearshore to <1 mg dm−3 offshore. Both TPM and DOC are most variable on the inner shelf. These data are consistent with CuCC data which indicate that the CuCC of inner shelf waters was relatively high and very heterogeneous. In contrast, DOC, TPM and copper complexing capacity are low and nearly invariant at the Sargasso Sea stations. We present a model of the distribution of complexing agents in different marine environments and hypothesize that the mechanisms underlying differences between environments relate to differences in the source(s) and nature of complexing agents in each system.  相似文献   

16.
Differences in the biological and ecological strategies of two tropical flatfishes, Etropus crossotus (fringed flounder) and Citharichthys spilopterus (bay whiff) are discussed. The comparative analysis was based on the seasonal distribution of relative abundance of the two species and flatfish movements utilizing estuarine plume influenced areas as part of their life cycles. Growth parameters of the von Bertalanffy equation and recruitment were estimated (FISAT software) to compare life cycle patterns. The recruitment patterns illustrate the key difference between “estuarine-dependent” and “estuarine-related” nekton strategies. Both species have a short life cycle with a continuous recruitment activity. E. crossotus is an estuarine-related species, with two recruitment pulses (winter frontal season), in the estuarine plume on the shelf. C. spilopterus is an estuarine-dependent species, with a main recruitment pulse during the rainy season in the estuarine plume, and a residual secondary pulse inside the adjacent estuarine system (Terminos Lagoon). The results show that the ecological success of these tropical coastal marine flatfish, with similar biological patterns, is based upon the sequential use (in time and space) of estuarine plume influenced habitats, suggesting that fish migration to shallow waters is related to food availability changes as a strategy towards optimum recruitment.  相似文献   

17.
Chromium(VI) concentrations ranging between 3.0 and 6.1 nmol l−1 and 3.1 and 7.3 nmol l−1 were found in the Arctic and Atlantic Oceans, respectively. The vertical profiles show modest depletion of chromium(VI) in surface waters, but poor overall correlations between Cr(VI) and nutrient profiles. Given that Cr(VI) is the dominant oxidation state of chromium in open-ocean waters, these data are combined with literature data to reassess the distribution of Cr in oceanic waters. It is concluded that while Cr shows some characteristics of both “recycled” and “accumulated” vertical profiles, it does not fall clearly within either group.  相似文献   

18.
Nepheloid layer dynamics in the northern Portuguese shelf   总被引:1,自引:0,他引:1  
A general hydrographic and nephelometric survey of the NW Portuguese continental shelf and upper slope was undertaken, under winter and spring conditions. The nepheloid layer dynamics along the shelf during three cruises were controlled, principally by the following factors: (a) the hydrography of the shelf-slope waters, i.e. the nepheloid layers followed isopycnals and water masses; (b) prevalence of upwelling or downwelling circulation over the shelf; (c) dispersion of material by river discharge (mainly the Douro river); (d) resuspension of mid-shelf fine deposits induced by swell; (e) peculiar morphology with the presence of Porto Canyon and outer shelf rock outcrops.The general circulation controls the seaward extension of the nepheloid layers. In winter, under dominant downwelling conditions, an intense bottom nepheloid layer (BNL) was observed on the shelf, due to river borne particle supply and remobilization of mid-shelf muddy sediments (depth ≈100 m). In this period the BNL increased in thickness to the top of the slope, following the isopycnals. Near the shelf-break the BNL detached to form intermediate nepheloid layers (INL). Small INLs appear deeper in some areas of the slope. A surface nepheloid layer (SNL) appears in the surface water over the shelf and slope. In spring, biological particles mainly contribute to the SNL, which is separated from the BNL by a zone of clear water. In winter the SNL is restricted to the inner shelf where there are high inputs of fluvial particles.Downwelling circulation probably induces transport of shelf particles to deeper waters in the BNL. In spring, the predominant circulation was southward (upwelling), the water column was highly stratified, and dispersion of particles in the SNL was offshore.  相似文献   

19.
The structure of the current and temperature fields along 30°N over the mid-shelf and western Blake Plateau in the South Atlantic Bight has been investigated by combining two moored instrument experiments in the summer of 1981. The shelf moorings were part of the second Georgia Bight Experiment (GABEX-II) and the Gulf Stream mooring data on the Blake Plateau have been described by LEE and WADDELL (1983). Empirical Orthogonal Functions (EOF) in the frequency domain are used to extract shelf and Gulf Stream coherent current and temperature fluctuations in the two- to 14-day period band. Three modes are found, of which the first two are interpreted as Gulf Stream meander and frontal eddy circulations. The difference between them is chiefly in the shelf motions; the first mode is primarily restricted to the shelf edge, whereas the second mode penetrates to the 40m isobath. The third mode dominates at mid-shelf and is the only mode that shows strong coherence with the windstress and local sea-level fluctuations. The relationship of the modes to the occurrence of mid- and inner-shelf cold sub-surface intrusions, generated by shelf-edge Gulf Stream frontal eddies, is examined. All three modes are found to play a role in the initiation, growth and decay of these structures.  相似文献   

20.
During the past decade, knowledge about the ecology and the environment of giant carbonate mounds has been growing continuously. However, still little is known about their growth dynamics. Three gravity cores from Galway Mound, Belgica Mound Province in the Porcupine Seabight off Ireland, were investigated for their sedimentological, geophysical and geochemical properties to get insight into the long-term development of this cold-water coral covered carbonate mound. These data were supplemented by radiometric age determinations on planktonic foraminifera and coral skeletons. The records from three different settings on Galway Mound reveal a coherent growth history that in general is similar to what is known from other carbonate mounds at the Irish margin. However, whereas other cores are often disturbed by numerous and not correlateable hiatuses, Galway Mound, in contrast, appears to be characterised by only one major hiatus representing a time gap of ~ 250 kyr. Several mechanisms are discussed in this study as possible causes for the observed stratigraphic record at Galway Mound. The most likely explanation is that the hiatus has its origin in a major mass wasting event on an instable, possibly glacial, unit that could have acted as a slip plane. The overall Late Quaternary growth history of Galway Mound fits well into existing cyclical mound development models, pointing to Galway Mound being an ‘actively growing’ mound (“coral bank stage”) at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号