首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Karachi is the largest city of Pakistan. The temperature change in Karachi is studied in this research by analyzing the time series data of mean maximum temperature (MMxT), mean minimum temperature (MMiT) and mean annual temperature (MAT) from 1947 to 2005 (59 years). Data is analyzed in three parts by running linear regression and by taking anomalies of all time periods: (a) whole period from 1947–2005; (b) phase one 1947–1975 and (c) phase two 1976–2005. During 1947 to 2005 MMxT has increased about 4.6°C, MMiT has no change and MAT has increased 2.25°C. During 1947–1975, MMxT increased 1.9°C, in this period there is − 1.3°C decrease in MMiT and MAT has raised upto 0.3°C. During 1976–2005, the MMxT, MMiT and MAT increased 2.7°C, 1.2°C and 1.95°C, respectively. The analysis shows significantly the role of extreme vulnerability of MMxT in rising the temperature of Karachi than the MMiT.  相似文献   

2.
Temperature trends in Malta (central Mediterranean) from 1951 to 2010   总被引:1,自引:0,他引:1  
There is as yet scanty published information on climate trends at a local scale within the central Mediterranean region. This is the most updated study that focuses on detailed understanding of air temperature shifts based on standard observations gathered from the Maltese islands. This analysis leads to a number of conclusions, most significant being (1) that the rate of change in the mean temperature is +1.1?°C between 1951 and 2010, (2) a warming trend of +1.2 and +1.1?°C exists in the maximum and minimum temperature, respectively, over the same period, (3) that the strongest anomalous warming has occurred during the last 30?years, particularly during the months of June, August and October, and (4) the local temperature trend is in the same category of air temperature trends detected in the nearby Island of Sicily (Catania, Italy), Perpignan (France) and Dar el-Beida (Algeria). Local data also show differences in the temperature trends, especially pronounced between the two 30-year periods of 1951–1980 and 1981–2010. This study provides an understanding of temperature shifts at recommended small spatio-temporal scales.  相似文献   

3.
This paper provides new evidence of regional warming trends from local Chinese observations covering the period 1951–2010. We used satellite-derived land data and weighted urban and rural temperature records (a weighted method) and estimate the regional warming trend, which involves natural climate change and human impact. The annual warming rate over the whole of China is 0.21?±?0.02 °C/decade. The seasonal warming is 0.30?±?0.05 °C/decade (Winter), 0.24 °C?±?0.03 °C/decade (Spring); 0.16?±?0.02 °C/decade (Summer) and 0.21?±?0.03 °C/decade (Autumn). The mean warming trend is lower than previous estimates (e.g. NMIC, CRU-China) using un-weighted methods (arithmetic average of all records). The warming difference between the weighted and un-weighted accounts for 27 % (12 %) of the NMIC (CRU-China) un-weighted estimate on the total warming. This indicates that previous estimations overestimated a regional warming trend. The differences can be partly attributed to the weighting of the urban effect which is taken into consideration in this study, resulting in a much slower temperature increase. Spatially, the northern part of China shows a larger difference than the south especially for winter and spring. We argue that it is of importance to take into consideration the influence of urban land-use change to improve the physical understanding of surface warming in China over past decades.  相似文献   

4.
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80–2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20–2.48 °C) was found in the southern, southeastern and northeastern parts during 1971–2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (?0.75 mm per year) and post-monsoon rainfall (?0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011–2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.  相似文献   

5.
The trends and features of China’s climatic change in the past and future are analysed by applying station obser-vations and GCM simulation results. Nationally, the country has warmed by 0.3oC in annual mean air temperature and decreased by 5% in annual precipitation over 1951-1990. Regionally, temperature change has varied from a cooling of 0.3oC in Southwest China to a warming of 1.0oC in Northeast China. With the exception of South China, all regions of China have shown a declination in precipitation. Climatic change has the features of increasing remark-ably in winter temperature and decreasing obviously in summer precipitation. Under doubled CO2 concentration, climatic change in China will tend to be warmer and moister, with increases of 4.5oC in annual mean air temperature and 11% in annual precipitation on the national scale. Future climatic change will reduce the temporal and spatial differences of climatic factors.  相似文献   

6.
Climate change trend in China, with improved accuracy   总被引:5,自引:0,他引:5  
We have found that a spatial interpolation of mean annual temperature (MAT) in China can be accomplished using a global ordinary least squares regression model since the relationship between temperature and its environmental determinants is constant. Therefore the estimation of MAT does not very across space and thus exhibits spatial stationarity. The interpolation of mean annual precipitation (MAP), however, is more complex and changes spatially as a function of topographic variation. Therefore, MAP shows spatial non-stationarity and must be estimated with a geographically weighted regression. A statistical transfer function (STF) of MAT was formulated using minimized residuals output from a high accuracy and high speed method for surface modeling (HASM) with an ordinary least squares (OLS) linear equation that uses latitude and elevation as independent variables, abbreviated as HASM-OLS. The STF of MAP under a BOX-COX transformation is derived as a combination of minimized residuals output by HASM with a geographically weighted regression (GWR) using latitude, longitude, elevation, impact coefficient of aspect and sky view factor as independent variables, abbreviated as HASM-GWR-BC. In terms of HASM-OLS and HASM-GWR-BC, MAT had an increasing trend since the 1960s in China, with an especially accelerated increasing trend since 1980. Overall, our data show that MAT has increased by 1.44 °C since the 1960s. The warming rates increase from the south to north in China, except in the Qinghai-Xizang plateau. Specifically, the 2,100 °C?·?d contour line of annual accumulated temperature (AAT) of ≥10 °C shifted northwestward 255 km in the Heilongjiang province since the 1960s. MAP in Qinghai-Xizang plateau and in arid region had a continuously increasing trend. In the other 7 regions of China, MAP shows both increasing and decreasing trends. On average, China became wetter from the 1960s to the 1990s, but drier from the 1990s to 2000s. The Qinghai-Xizang Plateau and Northern China experienced more climatic extremes than Southern China since the 1960s.  相似文献   

7.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

8.
Daily minimum temperature (Tmin) and maximum temperature (Tmax) data of Huairou station in Beijing from 1960 to 2008 are examined and adjusted for inhomogeneities by applying the data of two nearby reference stations. Urban effects on the linear trends of the original and adjusted temperature series are estimated and compared. Results show that relocations of station cause obvious discontinuities in the data series, and one of the discontinuities for Tmin are highly significant when the station was moved from downtown to suburb in 1996. The daily Tmin and Tmax data are adjusted for the inhomogeneities. The mean annual Tmin and Tmax at Huairou station drop by 1.377°C and 0.271°C respectively after homogenization. The adjustments for Tmin are larger than those for Tmax, especially in winter, and the seasonal differences of the adjustments are generally more obvious for Tmin than for Tmax. Urban effects on annual mean Tmin and Tmax trends are ?0.004°C/10 year and ?0.035°C/10 year respectively for the original data, but they increase to 0.388°C/10 year and 0.096°C/10 year respectively for the adjusted data. The increase is more significant for the annual mean Tmin series. Urban contributions to the overall trends of annual mean Tmin and Tmax reach 100% and 28.8% respectively for the adjusted data. Our analysis shows that data homogenization for the stations moved from downtowns to suburbs can lead to a significant overestimate of rising trends of surface air temperature, and this necessitates a careful evaluation and adjustment for urban biases before the data are applied in analyses of local and regional climate change.  相似文献   

9.
Temperature trends in Libya over the second half of the 20th century   总被引:1,自引:0,他引:1  
This paper investigates spatial variability of temperature trends over Libya in the second half of the 20th century. The study is based on complete and homogeneous time series of minimum, maximum, and mean temperature for ten observatories. During the investigated period (1951–1999), temperature trend analyses have experienced a downward trend in the maximum surface temperature (about –0.06°C decade–1) and an upward trend in the minimum surface temperature (about 0.23°C decade–1). Cooling tendency in maximum temperature is spatially more pronounced in inland stations compared to coastal stations. At the seasonal scale, maximum temperature cooling is more obvious in winter and spring, meanwhile minimum temperature warming is more pronounced in summer and fall. In accordance with global trends, the surface mean temperature has moderately risen at an average rate of 0.09°C decade–1. However, this trend has shown considerable temporal variability considering a more pronounced upward trend in summer and fall. In conjunction with other regional and global investigations, clear trends towards smaller diurnal range are presented (–0.28°C decade–1).  相似文献   

10.
In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4°–19°W and 43°–49°N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961–2000. The spatial resolution of the model data presented is approx. 10 km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of ?0.6 and ?0.7 °C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23 % depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS.  相似文献   

11.
The study of the winter temperatures, averaged from the records of 11 observatories in the Da Hinggan Mountains and its western areas in China (DHM-WA), identified 11 extremely cold (≤???1.5 °C) and 13 extremely warm winters (≥?+?1.5 °C) during the past 60 years (1951–2010). The winters of 2011 and 2012 are another two extremely cold events. Aimed at exploring the climate causes, a comprehensive investigation is carried out on variations of some major atmospheric circulation components. Additionally, opposite circulation regimes are verified by examining the mean 500-hPa circulation patterns and sea level pressure (SLP) corresponding to 14 warm and 18 cold sea surface temperature (SST) phases over the North India Ocean (NIO) during the period of 1951–2010. Composite of an extremely cold winter usually includes a large and strong Siberian High, a deep East Asian trough to the west, an small and weak western Pacific Subtropical High to the east, a large North Polar vortex and a weakened westerly stream over Eurasia continent accompanied by a strong meridional winds from the polar region to lower latitude. Moreover, it has been found that a favorable circulation condition associated with the extremely cold winters to DHM-WA is mainly controlled by the SST over NIO in the previous warm season (June–September); This is primarily related to changes in the intensity of the Walker and Anti-Walker circulations, which subsequently influence the major circulation components and result in an extremely cold winter in DHM-WA.  相似文献   

12.
An objective cyclone tracking algorithm is applied to twentieth century reanalysis (20CR) 6-hourly mean sea level pressure fields for the period 1871–2010 to infer historical trends and variability in extra-tropical cyclone activity. The tracking algorithm is applied both to the ensemble-mean analyses and to each of the 56 ensemble members individually. The ensemble-mean analyses are found to be unsuitable for accurately determining cyclone statistics. However, pooled cyclone statistics obtained by averaging statistics from individual members generally agree well with statistics from the NCEP-NCAR reanalyses for 1951–2010, although 20CR shows somewhat weaker cyclone activity over land and stronger activity over oceans. Both reanalyses show similar cyclone trend patterns in the northern hemisphere (NH) over 1951–2010. Homogenized pooled cyclone statistics are analyzed for trends and variability. Conclusions account for identified inhomogeneities, which occurred before 1949 in the NH and between 1951 and 1985 in the southern hemisphere (SH). Cyclone activity is estimated to have increased slightly over the period 1871–2010 in the NH. More substantial increases are seen in the SH. Notable regional and seasonal variations in trends are evident, as is profound decadal or longer scale variability. For example, the NH increases occur mainly in the mid-latitude Pacific and high-latitude Atlantic regions. For the North Atlantic-European region and southeast Australia, the 20CR cyclone trends are in agreement with trends in geostrophic wind extremes derived from in-situ surface pressure observations. European trends are also consistent with trends in the mean duration of wet spells derived from rain gauge data in Europe.  相似文献   

13.
The paper focuses on exceptionally hot summers (EHS) as a manifestation of contemporary climate warming. The study identifies EHS occurrences in Central and Eastern Europe and describes the characteristic features of the region’s thermal conditions. Average air temperatures in June, July and August were considered, as well as the number of days with maximum temperatures exceeding 25, 30 and 35 °C, and with a minimum temperature greater than >20 °C, as recorded at 59 weather stations in 1951–2010. Extremely hot summers are defined as having an average temperature equal to or greater than the long-term average plus 2 SD. A calendar of EHSs was compiled and their spatial extent identified. The region experienced 12 EHSs, which occurred in a given year at 5 % or more stations (1972, 1981, 1988, 1992, 1997, 1998, 1999, 2002, 2003, 2006, 2007 and 2010). The EHS frequency of occurrence was found to be clearly on an increase. Indeed, only one EHS occurred during the first 30 years, but these occurred five times during the last 10 years of the study period. Their geographical extent varied both in terms of location and size. EHSs were observed at 57 out of the total of 59 weather stations in the study (the exceptions were Pecora and Cluj). The average air temperature of EHSs tended to exceed the relevant long-term average by 2–4 °C. The summer of 2010 was among the hottest (temperature anomaly 5.5–6 °C) and spatially largest.  相似文献   

14.
Changes in climatic parameters are often given in terms of global averages even though large regional variability is generally observed. The study of regional tendencies provides not only supplementary conclusions to more large-scale oriented results but is also of particular interest to local policy-makers and resource managers to have detailed information regarding sensible and influential climatic parameters. In this study, changes in precipitation for the Balearic Islands (Spain) have been analyzed using data from 18 rain gauges with complete daily time series during the period 1951–2006 and two additional sites where only monthly totals were available. Tendencies for maximum and minimum 2-m temperatures have also been derived using data from three thermometric stations with daily time series for the period 1976–2006. The thermometric stations are located at the head of the runways in the airports of the three major islands of the archipelago, where urbanization has arguably not had a relevant impact on the registered values. The annual mean temperature in the mid-troposphere and lower stratosphere has also been analyzed using the Balearics radiosonde data for the period 1981–2006. Results show there is a negative tendency for annual precipitation (163 mm per century) with 85% significance on the sign of the trend. An abrupt decrease in mean yearly precipitation of 65 mm is objectively detected in the time series around 1980. Additionally, the analysis shows that light and heavy daily precipitation (up to 4 mm and above 64 mm, respectively) increase their contribution to the total annual, while the share from moderate-heavy precipitations (16–32 mm) is decreasing. Regarding the thermometric records, minimum temperatures increased at a rate of 5.8°C per century during the 31 years and maximum temperatures also increased at a rate of 5.0°C per century, both having a level of statistical significance for the sign of the linear trend above 99%. Temperatures in the mid-troposphere decreased at a rate of ??5.4°C per century while a tendency of ??7.8°C per century is found in the lower stratosphere. The level of statistical significance for the sign of both the tropospheric and stratospheric linear trends is above 98% despite the great inter-annual variability of both series.  相似文献   

15.
The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1°C in the north to nearly 10°C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0°C, while maximum daily temperatures cooled by 0.15°C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand.  相似文献   

16.
Recent temperature projections for urban areas have only been able to reflect the expected change due to greenhouse-induced warming, with little attempt to predict urbanisation effects. This research examines temperature changes due to both global warming and urbanisation independently and applies them differentially to urban and rural areas over a sub-tropical city, Hong Kong. The effect of global warming on temperature is estimated by regressing IPCC data from eight Global Climate Models against the background temperature recorded at a rural climate station. Results suggest a mean background temperature increase of 0.67 °C by 2039. To model temperature changes for different degrees of urbanization, long-term temperature records along with a measureable urbanisation parameter, plot ratio surrounding different automatic weather stations (AWS) were used. Models representing daytime and nighttime respectively were developed, and a logarithmic relationship between the rate of temperature change and plot ratio (degree of urbanisation) is observed. Baseline air temperature patterns over Hong Kong for 2009 were derived from two ASTER thermal satellite images, for summer daytime and nighttime respectively. Dynamic raster modeling was employed to project temperatures to 2039 in 10-year intervals on a per-pixel basis according to the degree of urbanization predicted. Daytime and nighttime temperatures in the highly urbanized areas are expected to rise by ca. 2 °C by 2039. Validation by projecting observed temperature trends at AWS, gave low average RMS errors of 0.19 °C for daytime and 0.14 °C for nighttime, and suggests the reliability of the method.  相似文献   

17.
This paper presents the analysis of mean daily temperature and precipitation from 1950 to 2010 in an area with Mediterranean climate of NE Spain including some coastal areas near Barcelona and the Penedès and Camp de Tarragona Depressions located between the Coastal Mountain Range and the Mediterranean Sea. Their variability, with especial attention to the frequency of extreme events, was analysed by using 18 indexes: seven for temperature and 11 for precipitation were analysed for four meteorological observatories. A multivariate analysis was performed in order to analyse the temperature and precipitation trends. During the analysed period, an increase in mean annual maximum temperature was observed in all observatories ranging between 1.5 and 2.2°C associated with an increase in the number of days with high extreme temperatures. Minimum temperature only increased significantly in the coast observatories (about 1.4°C). By seasons, temperature trends were greater at Vilafranca del Penedès and Barcelona observatories and lower at Reus airport. Maximum spring temperature increased between 1.5 and 2.5°C, summer temperature increased between 1.6 and 2.5°C and autumn temperature increased by up to 2.2°C. Precipitation presented a high variability from year to year, without significant trends. The most significant results were related to the dry conditions observed in spring 2000s, the wet conditions recorded in summer 2000s and 1980s and the longer dry periods in autumn 2000s. The increase of temperatures determined the increase of evapotranspiration, and due to the higher irregular distribution, water deficits for crop development were recorded. An advance of phenological dates and a reduction of grape yield are associated to climate trends.  相似文献   

18.
Using 51 meteorological stations in the arid region of northwest China in the mountain, oasis, and the desert areas obtained from 1960 to 2010, this paper conducted a comparative analysis for detecting temperature and precipitation changes in the diverse environments. In recent 50 years, temperature has increased at 0.325, 0.339, and 0.360 °C per decade in the mountain, oasis, and the desert areas, respectively; and also, precipitation has increased at 10.15, 6.29, and 0.87 mm per decade, but in which the increasing trend of precipitation in desert area was not significant. Before the 1990s, the increase in temperature was the fastest in the desert area, up to 0.214 °C per decade, but was the slowest in the mountain area, only 0.103 °C per decade. The temperature rising was faster after the 1990s, 0.606 °C per decade, in the oasis area was fastest, but was the slowest in the desert region with 0.402 °C per decade. The precipitation in each area was stable from 1960 to 1986, but an increase in the oasis and mountain area was larger from 1987 to 2010.  相似文献   

19.
Climate change signals in Saudi Arabia are investigated using the surface air temperature (SAT) data of 19 meteorological stations, well distributed across the country. Analyses are performed using cumulative sum, cumulative annual mean, and the Mann–Kendall rank statistical test for the period of 1978–2010. A notable change in SAT for the majority of stations is found around 1997. The results show a negative temperature trend (cooling) for all stations during the first period (1978–1997), followed by a positive trend (warming) in the second period (1998–2010) with reference to the entire period of analysis. The Mann–Kendall test confirms that there is no abrupt cooling at any station during the analysis period, reflecting the warming trend across the country. The warming trend is found to be 0.06 °C/year, while the cooling trend is 0.03 °C/year, which are statistically significant.  相似文献   

20.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号