首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In September 2009, the Indian Space Research Organisation launched a Ku-band microwave scatterometer (OSCAT) onboard the polar orbiting satellite ‘Oceansat-2’. In this article, the capabilities of the newly available OSCAT sea-surface winds are demonstrated by studying the monsoon intra-seasonal variabilities during the 2010 summer monsoon season. A preliminary validation of OSCAT surface winds with European Centre for Medium Range Weather Forecasting (ECMWF) analysis surface winds carried out during June to August 2010 suggests that the quality of the OSCAT winds are able to meet the mission specifications. The observed mean monthly features of the Indian summer monsoon in July and August 2010 from OSCAT match well with those of ECMWF reanalysis winds. The OSCAT winds capture the known characteristics of the Indian summer monsoon, such as the northward propagation of a low level jet, and its preferred locations during active and break monsoon conditions, reasonably well. The Morlet wavelet transform is used for time series analysis. The OSCAT measured sea-surface winds were found to possess two dominant modes of variability during the 2010 monsoon season: one with a periodicity between 32 and 64?days, and another with a periodicity between 8 and 16?days. Rainfall activity over the Indian summer monsoon region is closely associated with the phases of the two above-mentioned dominant intra-seasonal variabilities. This study demonstrates that the OSCAT winds can be used very well and with confidence for meteorological studies.  相似文献   

2.
Changes in the frequency of tropical cyclones over the North Indian Ocean   总被引:3,自引:0,他引:3  
Summary  Changes in the frequency of tropical cyclones developing over the Arabian Sea and the Bay of Bengal have been studied utilizing 122 year (1877–1998) data of tropical cyclone frequency. There have been significant increasing trends in the cyclone frequency over the Bay of Bengal during November and May which are main cyclone months. During transitional monsoon months; June and September however, the frequency has decreased. The results have been presented for five months, i.e., May-November which are relevant as far as tropical cyclone frequency over the Arabian Sea and the Bay of Bengal are concerned. The tropical cyclone frequency in the Arabian Sea has not shown any significant trend, probably due to small normal frequency. The frequency time series has been subjected to the spectral analysis to obtain the significant periods. The cyclone frequency over the Bay of Bengal during May has shown a 29 year cycle. A significant 44 year cycle has been found during November. Over the Arabian Sea significant cycles of 13 and 10 years have been observed during May-June and November, respectively. The tropical cyclone frequency in the North Indian Ocean has a prominent El Ni?o-Southern Oscillation (ENSO) scale cycle (2–5 years) during all above five months. The annual cyclone frequency exhibits 29 year and ENSO scale (2–4 years) oscillations. There is a reduction in tropical cyclone activity over the Bay of Bengal in severe cyclone months May and November during warm phases of ENSO. Examination of the frequencies of severe cyclones with maximum sustained winds ≥ 48 knots has revealed that these cyclones have become more frequent in the North Indian Ocean during intense cyclone period of the year. The rate of intensification of tropical disturbances to severe cyclone stage has registered an upward trend. Received June 7, 1999/Revised March 20, 2000  相似文献   

3.
Study of tropical cyclogenesis using satellite data   总被引:1,自引:1,他引:0  
Summary Satellite data are used to study the cloud development and water vapor supply during the genesis of Typhoon Nina (November 1987). Using satellite microwave and infrared data, the following physical parameters are retrieved and analyzed: water vapor path, surface wind, sea surface evaporation, precipitation, and cloud type.During the week prior to the genesis of Nina, several cloud clusters were observed in the region of the subsequent genesis (near 5° N, 170° E). Cloud type studies showed that several clusters had similar structures. By examining the sea surface evaporation and precipitation in the cloud clusters, we found that the precipitation exceeded evaporation by several times in the precipitating areas of the cluster that evolved into a tropical storm, indicating that local evaporation alone could not supply enough water vapor, and that horizontal transfer of water vapor from surrounding areas is required for the tropical cyclogenesis. Surface wind fields indicated that there was a constant increase of cyclonic wind in the area of the cloud cluster that finally led to the tropical storm, while no apparent increase of wind was found in the other cloud clusters. In addition, water vapor amount did not decrease for several days until the disturbance was upgraded to a tropical storm, while it was found to decrease after the mature stage for the other cloud clusters that did not evolve into tropical storms.From consideration of the water vapor balance, the cyclogenesis can be interpreted as a transition from an unbalanced cluster to a balanced cluster. Horizontal transfer of water vapor in a water vapor-unbalanced cloud cluster is not large enough to overcome the deficit caused by precipitation over evaporation. The shortage of water vapor in the unbalanced cluster results in a short-lived cloud cluster. When the sum of evaporation and horizontal transfer can provide enough water vapor supply to balance the removal by precipitation (balanced cluster), the precipitation does not dry up the atmosphere. This is the necessary condition for the cyclogenesis. The increase in horizontal transfer of water vapor is found in this study to be associated with the increase of the surface cyclonic wind.With 5 Figures  相似文献   

4.
A hierarchical modeling approach is used to study the process by which interactions of easterly waves with the background flow can result in a reduction in the longitudinal and vertical scale of the waves. Theory suggests that in flows that possess a negative longitudinal gradient (U x  < 0) there is a reduction of longitudinal and vertical group speeds and an increase in regional wave action density (or “wave energy”). Relative vorticity increases locally leading to an increase in the likelihood of tropical cyclogenesis near the wave axis. Opposite impacts on the structure of the waves is expected in a U x  > 0 domain. In the simplified framework of a free-surface and divergent shallow water model, Rossby wave properties are tracked through a range of background flow scenarios to determine the important scales of interaction. The importance of wave energy accumulation for tropical cyclogenesis is then studied in a full physics and dynamics model using a nested regional climate model simulation, at 12 km horizontal grid spacing, over the tropical North Atlantic region for the entire 2005 hurricane season. The dynamical environment within which 70% of easterly waves formed tropical cyclones exhibits coherent regions in which easterly winds increase towards the east, consistent with the occurrence of wave energy accumulation.  相似文献   

5.
利用1979—2017年TropFlux海气热通量资料、ERA5再分析资料及HadISST资料,分析了冬季北大西洋涛动(North Atlantic Oscillation, NAO)与同期热带印度洋海气热通量的关系。结果表明,NAO指数与热带印度洋海气净热通量整体上呈负相关,意味着NAO为正位相时,海洋向大气输送热量,其显著区域主要位于热带西印度洋(50°~70°E,10°S~10°N)。净热通量的变化主要依赖于潜热通量和短波辐射的变化;潜热通量和短波辐射在NAO正(负)位相事件期间的贡献率分别为72.96%和61.48%(71.72%和57.06%)。NAO可通过Rossby波列影响印度洋地区局地大气环流,进而影响海气热通量;当NAO为正位相时,波列沿中低纬路径传播至印度洋地区,在阿拉伯海北部对流层高层触发异常反气旋环流。该异常反气旋性环流加强了阿拉伯高压,使得北印度洋偏北风及越赤道气流加强。伴随风速的加强,海面蒸发增强,同时加强的越赤道气流导致热带辐合带强度偏强,深对流加强引起对流层水汽和云量增多,进而引起海表下行短波辐射减少。  相似文献   

6.
Intraseasonal Oscillation in the Tropical Indian Ocean   总被引:1,自引:1,他引:1  
1. Introduction The intraseasonal oscillation (ISO or Madden- Julian Oscillation, MJO) in the tropical atmosphere has been studied extensively, including its existence, structure, evolution and propagation (Madden and Ju- lian, 1971; Murakami, et al., 198…  相似文献   

7.
印度洋偶极子(IOD)是热带印度洋秋季最强的年际变率,它会通过大气遥相关来影响世界许多地区的气候。目前耦合气候模式对IOD预报技巧仍非常有限,远低于热带太平洋的厄尔尼诺事件的预报技巧。鉴于深度学习具备高效的数据处理能力,本文使用深度学习中的卷积神经网络(CNN)与人工神经网络中的多层感知机(MLP)处理再分析观测资料,从而进行IOD预报。由于当预报初始时刻为北半球冬春季时,对IOD事件的预报技巧较低。因此,为探索CNN的预报能力,本文仅使用三种(1~3月、2~4月、3~5月)初始时刻的海表温度异常(SSTA)作为CNN的输入数据,来预报其后续七个月的印度洋偶极子指数(DMI)、东极子指数(EIOI)和西极子指数(WIOI)。结果表明:CNN对DMI、EIOI和WIOI的有效预测时效均超过了6个月。与现在耦合动力模式相比,CNN模型能够显著提升DMI和EIOI的预报技巧,但对WIOI的预报技巧提升有限。当预报提前时间为7个月时,CNN模型能够比较准确地预报1994、1997与2019年的IOD事件。由于CNN模型能够更好地抓住印度洋海温的空间结构特征,它对IOD事件的预报技巧比传统神经网络MLP高。  相似文献   

8.
New and previous versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute atmospheric general circulation models are used to investigate potential future changes in tropical cyclone (TC) activity in the North Indian Ocean (NIO). Fifteen ensemble experiments are performed under the International Panel on Climate Change A1B scenario. Most of the ensemble future (2075–2099) experiments do not project significant future changes in the basin-scale TC genesis number; however, they commonly show a substantial increase (by 46 %) in TC frequency over the Arabian Sea and a decrease (by 31 %) in the Bay of Bengal. Projected future changes in TC genesis frequency show a marked seasonal variation in the NIO: a significant and robust reduction during the pre-monsoon season, an increase during the peak-monsoon season, and a westward shift during the post-monsoon season. Several large-scale thermodynamic and dynamical parameters are analysed to elucidate the physical mechanism responsible for the future changes in TC activity; this analysis reveals a seasonal dependence of the relative contribution of these parameters to the projected future changes in TC genesis frequency.  相似文献   

9.
Summary The Advanced Regional Prediction System (ARPS) model developed at Center for Analysis and Prediction of Storms at Oklahoma State University, USA is used for simulation of monsoon depression and tropical cyclone over Indian region. The radiosonde data are included in the initial analyses and subsequently; the simulations are performed with 50km and 25km grid resolutions. Two sets of forecast experiments produced by two types of analyses (with radiosonde and without radiosonde data) are compared. It is found that predicted mean sea-level pressure of the depression becomes closer to mean sea level pressure reported in Indian Daily Weather Reports when initialized with analyses containing radiosonde data. The precipitation forecast also is improved when initialized with the analyses containing radiosonde data. The simulation of tropical cyclone with 25km grid resolution is able to simulate some subsynoptic scale features of the system.  相似文献   

10.
The quasi-biweekly oscillation(QBWO) is the second most dominant intraseasonal mode over the western North Pacific(WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis(TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found.More TCG events occur during the QBWO's convectively active phase. Based on the genesis potential index(GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO's active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO's inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms.Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity.The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns—the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains(SSWs) over the WNP, with larger amplitude SSWs during the QBWO's active phase. This implies a possible enhanced(weakened) relationship between TCG and SSWs during the active(inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.  相似文献   

11.
12.
The empirical orthogonal function (EOF) analysis of subsurface temperature shows a dominant north-south mode of interannual variability in the Tropical Indian Ocean (TIO) at around 100 m depth (thermocline). This subsurface mode (SSM) of variability evolves in September-November (SON) as a response to Indian Ocean Dipole and intensifies during December-February (DJF) reinforced by El Niño and Southern Oscillation (ENSO) forcing. The asymmetry in the evolution of positive and negative phases of SSM and its impacts on the modulation of surface features are studied. The asymmetry in the representation of anomalous surface winds along the equator and off-equatorial wind stress curl anomalies are primarily responsible for maintaining the asymmetry in the subsurface temperature through positive and negative phases of the SSM. During the positive phase of SSM, downwelling Rossby waves generated by anticyclonic wind stress curl propagate towards the southwestern TIO (SWTIO), the thermocline ridge region of mean upwelling. The warmer subsurface water associated with the downwelling Rossby waves upwells in the region of mean upwelling and warms the surface resulting in strong subsurface-surface coupling. Such interaction processes are however weak during the negative phase of SSM. The asymmetry in the subsurface-surface interaction during the two phases of SSM and its impact on the modulation of surface features of TIO are also reported. In addition to the ENSO forcing, self-maintenance of SSM during DJF season is evident in the positive SSM (PSSM) years through modulation of subsurface surface coupling and air-sea coupling. This positive feedback during PSSM years is maintained by the deepening thermocline, warm SSTs and convection. The asymmetry in the thermocline evolution is more evident in the SWTIO and southern TIO.  相似文献   

13.
Summary Wave-organized convective features in the southwest Indian Ocean are described using Hovmoller composites of satellite imagery, OLR anomalies and ECMWF precipitable water departures during the southern summer. Westward movement of large convective elements is noted in the 10–20°S latitude band in about half of the years between 1970 and 1984. A study of 47 convective systems from satellite imagery establishes the climatological features, including zonal propagation speeds for maritime systems in the range –2 to –4 m s–1, wavelengths of 25–35° longitude (3,000 km), lifespans of 10–20 days and convective areas of 7–10° longitude (800 km). Transient convective waves over the tropical SW Indian Ocean are slower and more diverse than their northern hemisphere counterparts. Interannual tendencies in the frequency and mode are studied. Wet summers over SE Africa correspond with an increased frequency of westward moving convective systems, whereas in dry summers convective systems tend to be quasi-stationary. INSAT data composites provide additional insight into the convective structure and show that tropical waves penetrated into southern Africa in February 1988. A more quantitative assessment of transient convective waves is provided by Hovmoller composites of OLR anomalies and precipitable water departures. Both display westward moving systems in 1976 and 1984 and highlight the wide variety and mixed mode character of convective waves. A case study is analyzed which illustrates the deepening of a moist, unstable layer coincident with the westward passage of a convective wave.With 12 Figures  相似文献   

14.
The temporal clustering of the western North Pacific tropical cyclogenesis and its modulation by the Madden–Julian oscillation (MJO) during the 1991 summer were examined based on the tropical cyclone best track, outgoing longwave radiation, and NCEP/NCAR reanalysis datasets. The wavelet analysis shows that convective activities around the monsoon trough in the western North Pacific possessed a distinct MJO with a period of 20–60 days. Two or more tropical cyclones were observed to form successively during each active phase of the MJO, and tropical cyclones tended to generate around the southeastern part of the maximum vorticity of the low-frequency cyclonic circulation during the developing and peak stages of the active MJO phase. But tropical cyclogenesis scarcely occurred during inactive MJO phases. Thus the MJO was a major agent in modulating repeated development of tropical cyclones in the western North Pacific during the 1991 summer. The MJO in circulation was characterized by a huge anomalous cyclone (anticyclone) in the lower troposphere existing alternately over the western North Pacific, leading to an enhanced (weakened) monsoon trough. An examination of the meridional gradient of absolute vorticity associated with the zonal flow indicates that the zonal flow in the monsoon trough region satisfied the necessary conditions for barotropic instability, with both zonal flow and the meridional gradient of absolute vorticity varying on the similar MJO timescale. The intraseasonal oscillation of such an unstable zonal flow might thus be an important mechanism for temporal clustering of tropical cyclogenesis in the western North Pacific. The barotropic conversion could provide a major energy source for the formation and growth of tropical cyclones in the western North Pacific during active MJO phases, with the eddy kinetic energy generation being dominated by both terms of eddies interacting with zonal and meridional gradients of the basic zonal flow.  相似文献   

15.
In the study authors analyzed the interannual relationship between the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) and the tropical Indian Ocean (TIO) precipitation in boreal winter for the period 1979–2009. A significant simultaneous teleconnection between them is found. After removing the El Niño/Southern Oscillation and Indian Ocean dipole signals, the AO/NAO and the TIO precipitation (0°–10°S, 60°–80°E) yield a correlation of +0.56, which is also consistent with the AO/NAO-outgoing longwave radiation correlation of ?0.61. The atmospheric and oceanic features in association with the AO/NAO-precipitation links are investigated. During positive AO/NAO winter, the Rossby wave guided by westerlies tends to trigger persistent positive geopotential heights in upper troposphere over about 20°–30°N and 55°–70°E, which is accompanied by a stronger Middle East jet stream. Meanwhile, there are anomalous downward air motions, strengthening the air pressure in mid-lower troposphere. The enhanced Arabian High brings anomalous northern winds over the northern Indian Ocean. As a result the anomalous crossing-equator air-flow enhances the intertropical convergence zone (ITCZ). On the other hand, the anomalous Ekman transport convergence by the wind stress curl over the central TIO deepens the thermocline. Both the enhanced ITCZ and the anomalous upper ocean heat content favor in situ precipitation in the central TIO. The AO/NAO-TIO precipitation co-variations in the IPCC AR4 historical climate simulation (1850–1999) of Bergen Climate Model version 2 were investigated. The Indian Ocean precipitation anomalies (particularly the convective precipitation along the ITCZ), in conjunction with the corresponding surface winds and 200 hPa anticyclonic atmospheric circulation and upper ocean heat contents were well reproduced in simulation. The similarity between the observation and simulation support the physical robustness of the AO/NAO-TIO precipitation links.  相似文献   

16.
季风涡旋影响西北太平洋台风生成初步分析   总被引:1,自引:1,他引:1       下载免费PDF全文
西北太平洋对流层低层大尺度低频环流季风涡旋与台风生成有密切的关系。利用时间滤波方法将季风涡旋和台风环流从逐日台风风场中分离出来,对两次季风涡旋活动个例分析发现,气旋初始扰动都首先出现在季风涡旋中心东部,一次季风涡旋活动可以伴随着一个或几个热带气旋的生成。通过进一步分析2000—2009年季风涡旋活动与热带气旋的生成关系发现,虽然季风涡旋的定义与环流强度和持续时间有关,但是热带气旋的生成位置大多数分布在季风涡旋的中心和东部,这可能与季风涡旋的Rossby波能量频散有关。  相似文献   

17.
Prospects for forecasting climate variability over the tropical Indian Ocean sector, specifically extreme positive events of the Indian Dipole Mode (IDM), with lead times of a season or more are investigated using the NASA Seasonal-to-Interannual Prediction Project (NSIPP) coupled-model system. The coupled system presents biases in its climatology over the Indian Ocean sector, which include (i) warmest sea-surface temperatures (SSTs) occurring in the central equatorial basin rather than on the eastside with the eastern (western) tropical SSTs up to 1 °C too cool (warm), (ii) a too northwest lying InterTropical Convergence Zonal over the ocean in boreal fall, (iii) a thermocline shallower (deeper) than observed west of Sumatra-Java (north of Madagascar), (iv) a delay of about a month in the onset (cessation) of the southwest (southeast) monsoon in the west (east) in boreal spring (fall). These biases affect the effectiveness of the SST-clouds-shortwave radiation negative feedback, the sensitivity of SST to wind-stress perturbations, and the character of equatorial coupled ocean-atmosphere modes. Despite these biases, ensemble hindcasts of the SST anomalies averaged over the eastern and western poles of the IDM for the decade 1993–2002, which included extreme positive events in 1994 and 1997/1998, are encouragingly good at 3-months lead. The onset of the 1997/1998-event is delayed by about a month, though the peak and decay are correctly timed. At 6-months lead-time, the forecast at the eastern pole deteriorates with either positive or negative false alarms generated each boreal fall. The forecast at the western pole remains good.  相似文献   

18.
Tropical cyclone (TC) activities in the North Indian Ocean (NIO) peak in May during the pre-monsoon period, but the TC frequency shows obvious inter-annual variations. By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016, the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper. Furthermore, the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated. The findings are as follows: 1) there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May, with the key influencing area located in the southwestern Indian Ocean (SWIO); 2) the anomalies of SST in SWIO (SWIO-SST) are closely related to a teleconnection pattern surrounding the Indian Ocean, which can significantly modulate the high-level divergence, mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO; 3) the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years.  相似文献   

19.
20.
Tropical cyclone (TC) rainfall asymmetry is often influenced by vertical wind shear and storm motion. This study examined the effects of environmental vertical wind shear (200-850 hPa) and storm motion on TC rainfall asymmetry over the North Indian Ocean (NIO): the Bay of Bengal (BoB) and the Arabian Sea (AS). Four TC groups were used in this study: Cyclonic Storm (CS), Severe Cyclonic Storm (SCS), Very Severe Cyclonic Storm (VSCS) and Extreme Severe Cyclonic Storm (ESCS). The Fourier coefficients for wave number-1 was used to analyze the structure of TC rainfall asymmetry. Results show that the maximum TC rainfall asymmetry was predominantly in the downshear left quadrant in the BoB, while it placed to downshear right quadrant in the AS, likely due to the different primary circulation strength of the TC vortex. For the most intense cyclone (ESCS), the maximum TC rainfall asymmetry was in the upshear left quadrant in the BoB, whereas it was downshear right quadrant in the AS. It is evident for both basins that the magnitude of TC rainfall asymmetry declined (increased) with TC intensity (shear strength). This study also examined the collective effects of vertical wind shear and storm motion on TC rainfall asymmetry. Here, the analysis in case of the strong shear environment (>7 m s-1) omitted for the AS because the maximum value for this basin was about 7 m s-1. The result showed that the downshear left quadrant was dominant in the BoB for the maximum TC rainfall asymmetry. In a weak shear environment (<5 m s-1), on the other hand, downshear right quadrant is evident for the maximum TC rainfall asymmetry in the BoB, while it placed dominantly downshear left quadrant in the AS. In the case of motion-relative wavenumber-1, the maximum TC rainfall asymmetry was dominantly downshear for both basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号