首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
孔隙、裂隙介质弹性波理论的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
近年来发展起来的“孔隙、裂隙介质弹性波理论”提高了人们对实际岩石声学性质的模拟和预测的能力.作为对这一理论的实验验证和重要应用,我们将它用来模拟和解释岩石超声实验中测得的干燥和饱和岩石弹性波速度随压力的变化曲线.理论模拟的重要参数,如岩石的裂隙密度等是从实验数据反演得到的.结果表明:无论是孔隙度较高的砂岩,还是孔隙度很小的致密岩石,如花岗岩,该理论都能很好地描述岩石在干燥和饱和状态下纵、横波速度随压力的变化.造成波速变化的原因是岩石中裂隙在压力作用下的闭合和裂隙密度的减少.本文的结果还指出了将岩石裂隙密度作为描述岩石的重要物性参数,并给出了从实验室超声测量中确定这一参数的方法.  相似文献   

2.
We report laboratory measurements of P- and S-wave velocities on samples of tuff from Campi Flegrei (Italy), and a new tomographic velocity map of the Campi Flegrei caldera. Laboratory measurements were made in a hydrostatic pressure vessel during both increasing and decreasing effective pressure cycles. Selected samples were also thermally stressed at temperatures up to 600°C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment, and velocities were measured after thermal stressing. Laboratory P- and S-wave velocities are initially low for the tuff, which has an initial porosity of ~45%, but both increase by between 25 and 50% over the effective pressure range of 5 to 80 MPa, corresponding to a decrease of porosity of ~70%. Marked velocity hysteresis, due to inelastic damage processes, is also observed in samples subjected to a pressurization-depressurization cycle. Tomographic seismic velocity distributions obtained from field recordings are in general agreement with the laboratory measurements. Integration of the laboratory ultrasonic and seismic tomography data indicates that the tuffs of the Campi Flegrei caldera can be water or gas saturated, and shows that inelastic pore collapse and cracking produced by mechanical and thermal stress can significantly change the velocity properties of Campi Flegrei tuffs at depth. These changes need to be taken into account in accurately interpreting the crustal structure from tomographic data.  相似文献   

3.
板岩作为一种浅变质岩在我国有着广泛的分布,对其地震波速度的研究将有助于对这类过渡性岩石的有效区分,对于浅层地壳的各向异性研究也具有重要意义.本文对采自云南丙中洛地区的板岩样品进行了地震波速度的室内实验研究,其中部分实验是在加拿大Dalhousie High Pressure Laboratory完成.实验获得了板岩在围压10~600 MPa条件下、不同构造主方向(X,Y和Z)上的地震波速度,在围压600 MPa时,X、Y、Z三个方向的P波速度分别为6.58、6.46、5.91 km/s,平均速度为6.30 km/s,S波平均速度约为3.62 km/s,VP/VS=1.74;并初步分析了板岩地震波速度、横波分裂及其波速各向异性随着围压的变化规律,发现所测量的板岩在较低围压(<150 MPa)时波速的各向异性随围压升高而迅速减小,主要是由于其内部微裂隙的定向排列引起的,而随着围压的继续增加(>150 MPa时)微裂隙基本闭合,黑云母、阳起石等片状矿物的定向排列成为其地震波各向异性的主导诱因,此时(围压为600 MPa)VP、VS的各向异性分别稳定在13%、16%左右.本研究所获取的基础实验数据及所探讨的板岩地震波性质将为确定地壳上部显微裂隙的优选定向、浅层地壳的各向异性分析、地球物理模型条件约束等提供基础.  相似文献   

4.
— A set of experiments on four samples of Oshima Granite at 15, 40 and 60 MPa confining pressure have been performed in order to investigate the damage behavior of granite submitted to deviatoric stress. In addition an experiment on one sample of Toki Granite at 40 MPa confining pressure was performed, in order to compare and elucidate the structural effects. Using acoustic emission data, strain measurements and elastic wave velocities allow to define consistently a damage domain in the stress space. In this domain, microcracking develops. The microcracking process is, in a first stage, homogeneous and, close to failure, localized. Elastic wave velocities decrease in the damage domain and elastic anisotropy develops. Using Kachanov's model (1993), elastic wave velocities have been inverted to derive the full second-order crack density tensor and characterize the fluid saturation state from the fourth-order crack density tensor. Crack density is strongly anisotropic and the total crack density close to failure slightly above one. The results indicate that the rock is saturated in agreement with the experimental conditions. The model is thus shown to be very appropriate to infer from elastic wave velocities a complete quantitative characterization of the damaged rock.  相似文献   

5.
The double torsion testing method has been used to determine catastrophic and subcritical crack propagation parameters for pre-cracked specimens of Westerly granite and Black gabbro under a number of environmental conditions.The critical stress intensity factor for catastrophic crack propagation (fracture toughness) of granite and gabbro has been measured at temperatures from 20 to 400°C, in a vacuum. At 20°C, the fracture toughness of Westerly granite was 1.79 ± 0.02 MPa · m12, and for two blocks of Black gabbro it was 3.03 ± 0.08 MPa · m12 and 2.71 ± 0.15 MPa ·m12, respectively. These values are very close to those reported by other investigators for tests conducted in air of ambient humidity at room temperature. For both rocks, fracture toughness at first increased slightly, and then decreased steadily on raising the temperature above ambient conditions. This behaviour is explained in terms of the density and distribution of thermally induced microcracks, as determined by quantitative optical microscopy.Subcritical crack growth behaviour has been studied at temperatures up to 300°C, and under water vapour at pressures of 0.6 to 15 kPa. Both the load relaxation and incremental constant displacement rate forms of the double torsion testing method were utilised to generate stress intensity factor/crack velocity diagrams. Crack growth was measured over the velocity range 5 × 10?3 to 10?7 m · s?1. Increasing both temperature and water vapour pressure resulted in substantially higher crack growth rates. The overall effect of raising the temperature over the range studied here (20–300°C) was to increase the crack growth rate in granite and gabbro by ~5 and 7 orders of magnitude, respectively, at constant stress intensity factor and vapour pressure of water. For both rocks, the slopes of stress intensity factor/crack velocity curves were sensitive to changes in both temperature and water vapour pressure at low values of the latter parameter. Slopes fell substantially on raising the water vapour pressure, but were relatively insensitive to changes in temperature at these higher pressures. No subcritical crack growth limit was encountered.Estimates of the uncertainty in our experimental data are given. From the results of multiple load relaxation experiments on Westerly granite specimens, we estimate the uncertainty in position of stress intensity factor/crack velocity curves along the stress intensity axis to be c. 10% of the fracture toughness, and the uncertainty in slope of such curves to be c. 12%.Problems associated with the extrapolation of our experimental data to regions of higher effective confining pressure in the Earth's crust are discussed.  相似文献   

6.
唐杰  吴国忱 《地球物理学报》2015,58(8):2986-2995
本文在实验室对所获取的东营地区层理发育的低孔隙度页岩和泥岩的各向异性裂纹演化特性进行了研究,获得了各向同性条件下泥页岩的力学与超声波响应特性,分析了应力幅度对于页岩声波速度和各向异性的影响.主要结论包括:(1)泥页岩在循环载荷下存在滞后效应,表明其经历了去压实或油气产生导致的超压;(2)泥岩和页岩具有不同程度的各向异性,随着各向同性压力的增高微裂隙逐渐闭合,样品的各向异性程度减弱;(3)分析了岩石韧度和裂纹损伤参数随压力的变化特征,相比泥岩,页岩各向异性程度更高,随压力变化更明显,其裂纹导致的附加各向异性更强;(4)分析了各向异性岩石的动态弹性模量特征,由于软裂隙空间的闭合,动态弹性模量在低压条件下都随着围压的增加有硬化趋势.  相似文献   

7.
We investigated initiation and propagation of compaction bands (CB) in six wet and four dry Bentheim sandstone samples deformed in axial compression tests with strain rates ranging from 3.2 × 10?8 s?1 to 3.2 × 10?4 s?1. Circumferential notches with 0.8-mm width and 5-mm depth served to initiate CB at mid-sample length. Wet samples were saturated with distilled water and deformed at 195 MPa confining pressure and 10 MPa pore pressure. Dry samples were deformed at 185 MPa confining pressure. Twelve P-wave sensors, eight S-wave sensors and two pairs of orthogonally oriented strain-gages were glued to the sample surface to monitor acoustic emission (AE), velocities and local strain during the loading process. Nucleation of compaction bands is indicated by AE clusters close to the notch tips. With progressive loading, AE activity increased and AE hypocenters indicated propagation of a single CB normal to the sample axis. CB propagation from the sample periphery towards the centre was monitored. Microstructural analysis of deformed samples shows excellent agreement between location of AE clusters and CBs. In both dry and wet samples the lateral propagation of CBs was about 100 times faster than axial shortening rates. At the slowest displacement rate, AE activity during band propagation was reduced and CB nucleation in wet samples occurred at 20% lower stresses. This may indicate an increasing contribution of stress corrosion processes to the formation of the compaction bands. In dry and wet samples inelastic compaction energy per area ranged between 16 and 80 kJ m?2. This is in good agreement with previous estimates from laboratory and field studies.  相似文献   

8.
9.
在三轴压缩下大理岩循环加载实验的初步研究   总被引:7,自引:1,他引:7  
在围压10、50、100和200MPa,应变率5×10-5/s和室温条件下,采用山东掖县大理岩岩样,在800t高温高压伺服三轴流变仪上进行了连续加载和循环加载实验.对岩样的残余强度和弹性模量的变化等问题进行了初步研究.得出:在低围压下(<100MPa),残余强度与超过极限强度后的循环加载次数有关;超过极限强度后加载弹性模量随着非弹性应变的增加而减小,并趋于一个极限值.在高围压下(≥100MPa),残余强度几乎与超过极限强度后的循环加载次数无关;超过极限强度或者产生应变强化后加载弹性模量几乎不随非弹性应变的增加而减小.  相似文献   

10.
水饱和裂纹对地壳岩样中地震波速及各向异性的影响   总被引:11,自引:3,他引:8       下载免费PDF全文
选择4种地壳岩石样品,经干燥或水饱和处理后在不同围压条件下测量了在其中传播的纵、横波的速度及其各向异性.在大气压条件下低孔隙度(<1%岩样中,水饱和样品中的纵波速度明显地比干燥样品中的高,但横波速度的差别不大.因为在低孔隙度岩样中纵波速度对孔隙流体的反应比横波速度敏感,可以用泊松比的变化来反映随着围压的增加晶粒间流体对弹性波传播特性的影响.根据实验数据,按O’Connell模型分别计算了干燥和水饱和岩样中的裂纹密度,与通过实测体应变曲线得到的裂纹孔隙度十分吻合.利用横波的速度和偏振特性可以推断岩样中定向排列微裂纹的空间取向情况.研究表明,同时测量在岩样中传播的纵、横波的速度,通过Vp/Vs比值可以给出有关颗粒边界流体的证据,也可以估计岩样中的裂纹密度.  相似文献   

11.
—The West Bohemian seismoactive region is situated near the contact of the Moldanu bian, Bohemian and Saxothuringian units in which a large volume is occupied by granitoid massifs. The spatial distribution of P-wave velocities and the rock fabric of five representative samples from these massifs were studied. The P-wave velocities were measured on spherical samples in 132 independent directions under hydrostatic pressure up to 400 MPa, using the pulse-transmission method. The pressure of 400 MPa corresponds to a depth of about 15 km in the area under study. The changes of P-wave velocity were correlated with the preferred orientations of the main rock fabric elements, i.e., rock forming minerals and microcracks. The values of the P-wave velocity from laboratory measurements on granite samples fit the velocity model used by seismologists in the West Bohemian seismoactive region.  相似文献   

12.
围压作用下岩石样品中微裂纹的闭合   总被引:4,自引:1,他引:4       下载免费PDF全文
岩石中普遍存在的微裂纹对其物理性质有十分显著的影响.为了得到不同围压条件下岩样内部微裂纹形态的变化,选取几种具有明显层理的岩石圈岩石样品,在不同围压下沿相互正交的三个方向对纵横波速度和线应变等进行了测量,根据O’Connell模型通过计算得出有效泊松比、裂纹密度、裂纹孔隙度和裂纹的c/a比值(a为硬币形裂纹半长轴的长度,c为其半宽度).结果表明,随着围压的增加,在垂直于层理面的方向上裂纹闭合最快但c/a比值不减反增.结合显微组构分析可知,岩石中的裂纹表面实际上是凸凹不平的,在围压增加引起裂纹闭合过程中一条裂纹可以变成几个,长度成倍减小但宽度变化不大,所以在垂直于层理面的方向上c/a比值随围压增加而增大.但另两个方向上的变化明显不同,应该与模型本身的适用范围有关.通过同时测量纵、横波速度,计算c/a比值,可以对样品中微裂纹的几何形态及空间分布方式有定性或半定量的了解.  相似文献   

13.
Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.  相似文献   

14.
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.  相似文献   

15.
Acoustic emissions (AE), compressional (P), shear (S) wave velocities, and volumetric strain of Etna basalt and Aue granite were measured simultaneously during triaxial compression tests. Deformation-induced AE activity and velocity changes were monitored using twelve P-wave sensors and eight orthogonally polarized S-wave piezoelectric sensors; volumetric strain was measured using two pairs of orthogonal strain gages glued directly to the rock surface. P-wave velocity in basalt is about 3 km/s at atmospheric pressure, but increases by > 50% when the hydrostatic pressure is increased to 120 MPa. In granite samples initial P-wave velocity is 5 km/s and increases with pressure by < 20%. The pressure-induced changes of elastic wave speed indicate dominantly compliant low-aspect ratio pores in both materials, in addition Etna basalt also contains high-aspect ratio voids. In triaxial loading, stress-induced anisotropy of P-wave velocities was significantly higher for basalt than for granite, with vertical velocity components being faster than horizontal velocities. However, with increasing axial load, horizontal velocities show a small increase for basalt but a significant decrease for granite. Using first motion polarity we determined AE source types generated during triaxial loading of the samples. With increasing differential stress AE activity in granite and basalt increased with a significant contribution of tensile events. Close to failure the relative contribution of tensile events and horizontal wave velocities decreased significantly. A concomitant increase of double-couple events indicating shear, suggests shear cracks linking previously formed tensile cracks.  相似文献   

16.
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observedin-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840–10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P- wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4 % higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effect of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.  相似文献   

17.
The calibration of the elastic characteristics of deformed coals is essential for seismic inversion of such units, because the prediction of coal deformation is essential for both mining safety and methane production. Therefore, many samples of broken and mylonitic deformed coal were tested with ultrasonic waves in the laboratory. These samples came from four mining areas: the Huainan, Pingdingshan, Hebi and Jiaozuo coal mines, which present five different metamorphic ranks shown as cylinders striking across circular limits of steel. Under normal pressures and temperatures, ultrasonic P- and S-wave tests show that the velocities, quality factors, and elastic moduli of the deformed coals were greatly reduced compared with undeformed coals. Also, some correlation was found between the P- and S-wave velocities in the deformed coals. However, there is no evidence of linear correlations between velocity and density, velocity and quality factor, or the quality factors of P- and S-waves. Compared with the elastic characteristics of undeformed coals, such as P- and S-wave velocity ratios or Poisson’s ratio, those of deformed coals generally decrease and the P-wave quality factors are less than those of S-waves. Moreover, the analysis of the relationship between pore structure and elastic modulus shows a better correlation between the P- and S-wave velocities and effective porosity, pore volume and specific surface area. Also, there are similar relationships between the pore structure and the Young’s and shear moduli. However, there are no such correlations with other moduli. Correlations between these elastic moduli, pore structure, coal rank and density were not found for the various samples of deformed coals, which is consistent with only structural destruction occurring in the deformed coals with other physical properties remaining unchanged. The experimental results show that it is possible to predict the deformation of coals with multi-component seismic elastic inversion.  相似文献   

18.
不同围压下岩石中泊松比的各向异性   总被引:22,自引:3,他引:22       下载免费PDF全文
由弹性波纵横波速比计算得到的泊松比,在利用地震波反演地下结构和物质组成时,可以提供比单纯地利用纵波或者横波波速更强的约束. 为了研究不同岩石中泊松比及其各向异性随围压的变化,选取19块典型的岩石样品,在不同围压下沿相互正交的3个方向同时测量纵、横波速度,并通过计算得到了泊松比及其各向异性. 结果表明,在大部分样品中泊松比各向异性与纵波速度各向异性有一定的相关性,但在有的样品中泊松比各向异性与纵波速度各向异性没有明显的关系,甚至表现出完全相反的变化规律. 由于泊松比也表现出很强的各向异性,在排除微裂隙的影响后有的仍可以达到30髎以上,在利用实际地震波传播数据通过泊松比反演地下物质结构时必须考虑其各向异性的影响.  相似文献   

19.
This paper part one is set out to lay primary observations of experimental compaction measurements to form the basis for rock physics modelling in paper part two. P- and S-wave velocities and corresponding petrophysical (porosity and density) properties of seven unconsolidated natural sands with different mineralogical compositions and textures are reported. The samples were compacted in a uniaxial strain configuration from 0.5 up to 30 MPa effective stresses. Each sand sample was subjected to three loading cycles to study the influence of stress reduction on acoustic velocities and rock physical properties with the key focus on simulating a complex burial history with periods of uplift. Results show significant differences in rock physical properties between normal compaction and overconsolidation (unloaded and reloaded). The differences observed for total porosity, density, and P- and S-wave velocities are attributed to irrecoverable permanent deformation. Microtextural differences affect petrophysical, acoustic, elastic and mechanical properties, mostly during normal consolidation but are less significant during unloading and reloading. Different pre-consolidation stress magnitudes, stress conditions (isotropic or uniaxial) and mineral compositions do not significantly affect the change in porosity and velocities during unloading as a similar steep velocity–porosity gradient is observed. The magnitude of change in the total porosity is low compared to the associated change in P- and S-wave velocities during stress release. This can be explained by the different sensitivity of the porosity and acoustic properties (velocities) to the change in stress. Stress reduction during unloading yields maximum changes in the total porosity, P- and S-wave velocities of 5%, 25%, and 50%, respectively. These proportions constitute the basis for the following empirical (approximation) correlations: Δϕ ∼ ±5 ΔVP and ΔVP ∼ ±2ΔVS. The patterns observed in the experiments are similar to well log data from the Barents Sea. Applications to rock physics modelling and reservoir monitoring are reported in a companion paper.  相似文献   

20.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号