首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

2.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2014,289(6):2157-2175
We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast (V SOHO?V bg>500 km?s?1), 25 moderate (0 km?s?1V SOHO?V bg≤500 km?s?1), and 6 slow (V SOHO?V bg<0 km?s?1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km?s?1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=?γ 2(V?V bg)|V?V bg| is more appropriate than a linear one a=?γ 1(V?V bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=?2.07×10?12(V?V bg)|V?V bg|?4.84×10?6(V?V bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km?s?1V?V bg≤2300 km?s?1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with V?V bg>2300 km?s?1.  相似文献   

3.
R. P. Kane 《Solar physics》2014,289(7):2669-2675
When a Coronal Mass Ejection (CME) is ejected by the Sun, it reaches the Earth orbit in a modified state and is called an ICME (Interplanetary CME). When an ICME blob engulfs the Earth, short-scale cosmic-ray (CR) storms (Forbush decreases, FDs) occur, sometimes accompanied by geomagnetic Dst storms, if the B z component in the blob is negative. Generally, this is a sudden process that causes abrupt changes. However, sometimes before this abrupt change (FD) due to strong ICME blobs, there are slow, small changes in interplanetary parameters such as steady increases in solar wind speed V, which are small, but can last for several hours. In the present communication, CR changes in such an event are illustrated in the period 1?–?3 October 2013, when V increased steadily from ~?200 km?s?1 to ~?400 km?s?1 during 24 hours on 1 October 2013. The CR intensities decreased by 1?–?2 % during some hours of this 24-hour interval, indicating that CR intensities do respond to these weak but long-lasting increases in interplanetary solar wind speed.  相似文献   

4.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

5.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

6.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

7.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

8.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

9.
We consider stars with radial velocities, proper motions, and distance estimates from the RAVE4 catalogue. Based on a sample of more than 145 000 stars at distances r < 0.5 kpc, we have found the following kinematic parameters: \({\left( {U,{\kern 1pt} V,{\kern 1pt} W} \right)_ \odot }\) = (9.12, 20.80, 7.66) ± (0.10, 0.10, 0.08) km s?1, Ω0 = 28.71 ± 0.63 km s?1 kpc?1, and Ω0 = ?4.28 ± 0.11 km s?1 kpc?2. This gives the linear rotation velocity V 0 = 230 ± 12 km s?1 (for the adopted R 0 = 8.0 ± 0.4 kpc) and the Oort constants A = 17.12 ± 0.45 km s?1 kpc?1 and B = ?11.60 ± 0.77 km s?1 kpc?1. The 2D velocity distributions in the UV, UW, and VW planes have been constructed using a local sample, r < 0.25 kpc, consisting of ~47 000 stars. A difference of the UV velocity distribution from the previously known ones constructed from a smaller amount of data has been revealed. It lies in the fact that our distribution has an extremely enhanced branch near the Wolf 630 peak. A previously unknown peak at (U, V) = (?96, ?10) km s?1 and a separate new feature in the Wolf 630 stream, with the coordinates of its center being (U, V) = (30, ?40) km s?1, have been detected.  相似文献   

10.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

11.
Bobylev  V. V.  Bajkova  A. T. 《Astronomy Letters》2019,45(9):580-592

We have studied the kinematic properties of the candidates for hot subdwarfs (HSDs) selected by Geier et al. from theGaiaDR2 catalogue. We have used a total of 12 515 stars with relative trigonometric parallax errors less than 30%. The HSDs are shown to have different kinematics, depending on their positions on the celestial sphere. For example, the sample of low-latitude (|b| < 20°) HSDs rotates around the Galactic center with a linear velocity V0 = 221 ± 5 km s?1. This suggests that they belong to the Galactic thin disk. At the same time, they lag behind the local standard of rest by ΔV ~ 16 km s?1 due to the asymmetric drift. The high-latitude (|b| ≥ 20°) HSDs rotate with a considerably lower velocity, V = 168 ± 6 km s?1. Their lagging behind the local standard of rest is already ΔV ~ 40 km s?1. Based on the entire sample of 12 515 HSDs, we have found a positive rotation around the x axis significantly differing from zero with an angular velocity ω1 = 1.36±0.24 km s?1 kpc?1. We have studied the samples of HSDs that are complete within r < 1.5 kpc. Based on them, we have traced the evolution of the parameters of the residual velocity ellipsoid as a function of both latitude |b| and coordinate |z|. The following vertical disk scale heights have been found: h = 180 ± 6 and 290 ± 10 pc from the low- and high-latitude HSDs, respectively. A new estimate of the local stellar density Σout = 53 ± 4 M☉ kpc?2 has been obtained for zout = 0.56 kpc from the high-latitude HSDs.

  相似文献   

12.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

13.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   

14.
We present a new approach to combine remote observations and in-situ data by STEREO/HI and Wind, respectively, to derive the kinematics and propagation directions of interplanetary coronal mass ejections (ICMEs). We use two methods, Fixed-? (F?) and Harmonic Mean (HM), to convert ICME elongations into distance, and constrain the ICME direction such that the ICME distance–time and velocity–time profiles are most consistent with in-situ measurements of the arrival time and velocity. The derived velocity–time functions from the Sun to 1?AU for the three events under study (1?–?6 June 2008, 13?–?18 February 2009, 3?–?5 April 2010) do not show strong differences for the two extreme geometrical assumptions of a wide ICME with a circular front (HM) or an ICME of small spatial extent in the ecliptic (F?). Due to the geometrical assumptions, HM delivers the propagation direction further away from the observing spacecraft with a mean difference of ≈?25°.  相似文献   

15.
We have determined the Galactic rotation parameters and the solar Galactocentric distance R 0 by simultaneously solving Bottlinger’s kinematic equations using data on masers with known line-of-sight velocities and highly accurate trigonometric parallaxes and proper motions measured by VLBI. Our sample includes 73 masers spanning the range of Galactocentric distances from 3 to 14 kpc. The solutions found are Ω0 = 28.86 ± 0.45 km s?1 kpc?1, Ω′0 = ?3.96 ± 0.09 km s?1 kpc?2, Ω″0 = 0.790 ± 0.027 km s?1 kpc?3, and R 0 = 8.3 ± 0.2 kpc. In this case, the linear rotation velocity at the solar distance R 0 is V = 241 ± 7 km s?1. Note that we have obtained the R 0 estimate, which is of greatest interest, from masers for the first time; it is in good agreement with the most recent estimates and even surpasses them in accuracy.  相似文献   

16.
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mass if the contribution of the binary orbital motion is not taken into account. Here, we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch on the issue of selection effects. We find that for clusters with a measured velocity dispersion of σ los?10 km?s?1 the presence of binaries does not affect the dynamical mass significantly. For clusters with σ los?1 km?s?1 (i.e., low-density clusters), the contribution of binaries to σ los is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Δlog?(L V /M dyn)=0.05–0.4 (in solar units) in the log?(L V /M dyn) versus age diagram.  相似文献   

17.
The well-known shell supernova remnant (SNR) HB3 is part of a feature-rich star-forming region together with the nebulae W3, W4, and W5. We study the HI structure around this SNR using five RATAN-600 drift curves obtained at a wavelength of 21 cm with an angular resolution of 2′ in one coordinate over the radial-velocity range ?183 to +60 km s?1 in a wider region of the sky and with a higher sensitivity than in previous works by other authors. The spatial-kinematic distribution of HI features around the SNR clearly shows two concentric expanding shells of gas that surround the SNR and coincide with it in all three coordinates (α, δ, and V). The outer shell has a radius of 133 pc, a thickness of 24 pc, and an expansion velocity of 48 km s?1. The mass of the gas in it is ≈2.3 × 105M. For the inner shell, these parameters are 78 pc, 36 pc, 24 km s? 1, and 0.9 × 105M, respectively. The inner shell is immediately adjacent to the SNR. Assuming that the outer shell was produced by the stellar wind and the inner shell arose from the shock wave of the SNR proper, we estimated the age of the outer shell, ≈1.7 × 106 yr, and the mechanical luminosity of the stellar wind, 1.5 × 1038 erg s?1. The inner shell has an age of ≈106 yr and corresponds to a total supernova explosion energy of ≈1052 erg.  相似文献   

18.
We have conducted a statistical study 27 coronal mass ejections (CMEs) from January 2007 – June 2008, using the stereoscopic views of STEREO SECCHI A and B combined with SOHO LASCO observations. A flux-rope model, in conjunction with 3D triangulations, has been used to reconstruct the 3D structures and determine the actual speeds of CMEs. The origin and the dynamic evolution of the CMEs are investigated using COR1, COR2 and EUVI images. We have identified four types of solar surface activities associated with CMEs: i) total eruptive prominence (totEP), ii) partially eruptive prominence (PEP), iii) X-ray flare, and iv) X-type magnetic structure (X-line). Among the 27 CMEs, 18.5% (5 of 27) are associated with totEPs, 29.6% (8 of 27) are associated with PEPs, 26% (7 of 27) are flare related, and 26% (7 of 27) are associated with X-line structures, and 43% (3 of 7) are associated with both X-line structures and PEPs. Three (11%) could not be associated with any detectable activity. The mean actual speeds for totEP-CMEs, PEP-CMEs, flare-CMEs, and X-line-CMEs are 404 km?s?1,247 km?s?1,909 km?s?1, and 276 km?s?1, respectively; the average mean values of edge-on and broadside widths for the 27 CMEs are 52 and 85 degrees, respectively. We found that slow CMEs (V≤400 km?s?1) tend to deflect towards and propagate along the streamer belts due to the deflections by the strong polar magnetic fields of corona holes, while some faster CMEs show opposite deflections away from the streamer belts.  相似文献   

19.
By directly comparing the photometric distances of Blaha and Humphreys (1989) (BH) to OB associations and field stars with the corresponding Hipparcos trigonometric parallaxes, we show that the BH distance scale is overestimated, on average, by 10–20%. This result is independently corroborated by applying the rigorous statistical-parallax method and its simplified analog (finding a kinematically adjusted rotation-curve solution from radial velocities and proper motions) to a sample of OB associations. These two methods lead us to conclude that the BH distance scale for OB associations should be shrunk, on average, by 11±6 and 24±10%, respectively. Kinematical parameters have been determined for the system of OB associations: u 0 = 8.2 ± 1.3 km s?1, v 0 = 11.9 ± 1.1 km s?1, w 0 = 9.5 ± 0.9 km s?1, σ u = 8.2 ± 1.1 km s?1, σ v = 5.8 ± 0.8 km s?1, σ w = 5.0 ± 0.8 km s?1, Ω0 = 29.1 ± 1.0 km s?1 kpc?1, Ω0′ = ?4.57 ± 0.20 km s?1 kpc?2, and Ω0″ = 1.32 ± 0.14 km s?1 kpc?3. The distance scale for OB associations reduced by 20% matches the short Cepheid distance scale (Berdnikov and Efremov 1985; Sitnik and Mel’nik 1996). Our results are a further argument for the short distance scale in the Universe.  相似文献   

20.
Geomagnetic field variations during five major Solar Energetic Particle (SEP) events of solar cycle 23 have been investigated in the present study. The SEP events of 1 October 2001, 4 November 2001, 22 November 2001, 21 April 2002 and 14 May 2005 have been selected to study the geomagnetic field variations at two high-latitude stations, Thule (77.5° N, 69.2° W) and Resolute Bay (74.4° E, 94.5° W) of the northern polar cap. We have used the GOES proton flux in seven different energy channels (0.8–4 MeV, 4–9 MeV, 9–15 MeV, 15–40 MeV, 40–80 MeV, 80–165 MeV, 165–500 MeV). All the proton events were associated with geoeffective or Earth directed CMEs that caused intense geomagnetic storms in response to geospace. We have taken high-latitude indices, AE and PC, under consideration and found fairly good correlation of these with the ground magnetic field records during the five proton events. The departures of the H component during the events were calculated from the quietest day of the month for each event and have been represented as ΔH THL and ΔH RES for Thule and Resolute Bay, respectively. The correspondence of spectral index, inferred from event integrated spectra, with ground magnetic signatures ΔH THL and ΔH RES along with Dst and PC indices have been brought out. From the correlation analysis we found a very strong correlation to exist between the geomagnetic field variation (ΔHs) and high-latitude indices AE and PC. To find the association of geomagnetic storm intensity with proton flux characteristics we derived the correspondence between the spectral indices and geomagnetic field variations (ΔHs) along with the Dst and AE index. We found a strong correlation (0.88) to exist between the spectral indices and ΔHs and also between spectral indices and AE and PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号