首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we are concerned with the statistics of steady unsaturated flow in soils with a fractal hydraulic conductivity distribution. It is assumed that the spatial distribution of log hydraulic conductivity can be described as an isotropic stochastic fractal process. The impact of the fractal dimension of this process, the soil pore-size distribution parameter, and the characteristic length scale on the variances of tension head and the effective conductivity is investigated. Results are obtained for one-dimensional and three-dimensional flows. Our results indicate that the tension head variance is scale-dependent for fractal distribution of hydraulic conductivity. Both tension head variance and effective hydraulic conductivity depend strongly on the fractal dimension. The soil pore-size distribution parameter is important in reducing the variability of the unsaturated hydraulic conductivity and of the fluxes.  相似文献   

2.
Within the framework of stochastic theory and the spectral perturbation techniques, three-dimensional dispersion in partially saturated soils with a finite correlation scale of log-hydraulic conductivity is analyzed. The effects of spatial variability of the moisture distribution parameter on the asymptotic spreading behavior of a unsaturated solute plume are assessed. This is accomplished by comparing two asymptotic macrodispersivities and two variance of solute concentration, obtained for a constant moisture content and spatially varied moisture, respectively.  相似文献   

3.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

4.
Hydraulic conductivity distribution and plume initial source condition are two important factors affecting solute transport in heterogeneous media. Since hydraulic conductivity can only be measured at limited locations in a field, its spatial distribution in a complex heterogeneous medium is generally uncertain. In many groundwater contamination sites, transport initial conditions are generally unknown, as plume distributions are available only after the contaminations occurred. In this study, a data assimilation method is developed for calibrating a hydraulic conductivity field and improving solute transport prediction with unknown initial solute source condition. Ensemble Kalman filter (EnKF) is used to update the model parameter (i.e., hydraulic conductivity) and state variables (hydraulic head and solute concentration), when data are available. Two-dimensional numerical experiments are designed to assess the performance of the EnKF method on data assimilation for solute transport prediction. The study results indicate that the EnKF method can significantly improve the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating hydraulic head measurements with a known solute initial condition. When solute source is unknown, solute prediction by assimilating continuous measurements of solute concentration at a few points in the plume well captures the plume evolution downstream of the measurement points.  相似文献   

5.
Solute plume subjected to field scale hydraulic conductivity heterogeneity shows a large dispersion/macrodispersion, which is the manifestation of existing fields scale heterogeneity on the solute plume. On the other hand, due to the scarcity of hydraulic conductivity measurements at field scale, hydraulic conductivity heterogeneity can only be defined statistically, which makes the hydraulic conductivity a random variable/function. Random hydraulic conductivity as a parameter in flow equation makes the pore flow velocity also random and the ground water solute transport equation is a stochastic differential equation now. In this study, the ensemble average of stochastic ground water solute transport equation is taken by the cumulant expansion method in order to upscale the laboratory scale transport equation to field scale by assuming pore flow velocity is a non stationary, non divergence-free and unsteady random function of space and time. Besides the stochastic explanation of macrodispersion and the velocity correction term obtained by Kavvas and Karakas (J Hydrol 179:321–351, 1996) before a new velocity correction term, which is a function of mean pore flow velocity divergence, is obtained in this study due to strict second order cumulant expansion (without omitting any term after the expansion) performed. The significance of the new velocity correction term is investigated on a one dimensional transport problem driven by a density dependent flow field.  相似文献   

6.
 3D groundwater flow at the fractured site of Asp? (Sweden) is simulated. The aim was to characterise the site as adequately as possible and to provide measures on the uncertainty of the estimates. A stochastic continuum model is used to simulate both groundwater flow in the major fracture planes and in the background. However, the positions of the major fracture planes are deterministically incorporated in the model and the statistical distribution of the hydraulic conductivity is modelled by the concept of multiple statistical populations; each fracture plane is an independent statistical population. Multiple equally likely realisations are built that are conditioned to geological information on the positions of the major fracture planes, hydraulic conductivity data, steady state head data and head responses to six different interference tests. The experimental information could be reproduced closely. The results of the conditioning are analysed in terms of ensemble averaged average fracture plane conductivities, the ensemble variance of average fracture plane conductivities and the statistical distribution of the hydraulic conductivity in the fracture planes. These results are evaluated after each conditioning stage. It is found that conditioning to hydraulic head data results in an increase of the hydraulic conductivity variance while the statistical distribution of log hydraulic conductivity, initially Gaussian, becomes more skewed for many of the fracture planes in most of the realisations.  相似文献   

7.
A Lagrangian perturbation method is applied to develop a method of moments for solute flux through a three-dimensional nonstationary flow field. The flow nonstationarity stems from medium nonstationarity and internal and external boundaries of the study domain. The solute flux is described as a space-time process where time refers to the solute flux breakthrough through a control plane (CP) at some distance downstream of the solute source and space refers to the transverse displacement distribution at the CP. The analytically derived moment equations for solute transport in a nonstationarity flow field are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. This approach combines the stochastic model with the flexibility of the numerical method to boundary and initial conditions. The developed method is applied to study the effects of heterogeneity and nonstationarity of the hydraulic conductivity and chemical sorption coefficient on solute transport. The study results indicate all these factors will significantly influence the mean and variance of solute flux.  相似文献   

8.
Hu BX 《Ground water》2006,44(2):222-233
A Lagrangian stochastic approach is applied to develop a method of moment for solute transport in a physically and chemically nonstationary medium. Stochastic governing equations for mean solute flux and solute covariance are analytically obtained in the first-order accuracy of log conductivity and/or chemical sorption variances and solved numerically using the finite-difference method. The developed method, the numerical method of moments (NMM), is used to predict radionuclide solute transport processes in the saturated zone below the Yucca Mountain project area. The mean, variance, and upper bound of the radionuclide mass flux through a control plane 5 km downstream of the footprint of the repository are calculated. According to their chemical sorption capacities, the various radionuclear chemicals are grouped as nonreactive, weakly sorbing, and strongly sorbing chemicals. The NMM method is used to study their transport processes and influence factors. To verify the method of moments, a Monte Carlo simulation is conducted for nonreactive chemical transport. Results indicate the results from the two methods are consistent, but the NMM method is computationally more efficient than the Monte Carlo method. This study adds to the ongoing debate in the literature on the effect of heterogeneity on solute transport prediction, especially on prediction uncertainty, by showing that the standard derivation of solute flux is larger than the mean solute flux even when the hydraulic conductivity within each geological layer is mild. This study provides a method that may become an efficient calculation tool for many environmental projects.  相似文献   

9.
This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier–Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589–605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541–51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775–84].  相似文献   

10.
Wang F  Bright J 《Ground water》2004,42(5):760-766
The influence on solute transport of the small-scale spatial variation of aquifer hydraulic conductivity (K) was analyzed by comparing results from fine-grid (2 m by 2 m) simulations of a synthetic heterogeneous aquifer to those from coarse-grid (8 m by 4 m) simulations of an equivalent homogeneous aquifer. Realizations of the K field of the heterogeneous aquifer were generated, using the Monte Carlo approach, from a lognormal distribution with mean log K of 2 (K in m/d) and three levels of log K variance of 0.1, 0.5, and 1.0. Numerical simulation results show that the average standard deviation of point concentrations increased from 1.21 to 5.78 when the value of log K variance was increased from 0.1 to 1.0. The average discrepancy between modeled concentrations (obtained from a coarse-grid deterministic numerical simulation) and the actual mean point concentrations (obtained from fine-grid Monte Carlo numerical simulations) increased from 0.91 to 4.23 with the increase in log K variance. The results from this study illustrate the uncertainty in predictions from contaminant transport models due to their inability to simulate the effects of heterogeneities at scales smaller than the model grid.  相似文献   

11.
Non-local stochastic moment equations are used successfully to analyze groundwater flow in randomly heterogeneous media. Here we present a moment equations-based approach to quantify the uncertainty associated with the estimation of well catchments. Our approach is based on the development of a complete second order formalism which allows obtaining the first statistical moments of the trajectories of conservative solute particles advected in a generally non-uniform groundwater flow. Approximate equations of moments of particles’ trajectories are then derived on the basis of a second order expansion in terms of the standard deviation of the aquifer log hydraulic conductivity. Analytical expressions are then obtained for the predictors of locations of mean stagnation points, together with their associated uncertainties. We implement our approach on heterogeneous media in bounded two-dimensional domains, with and without including the effect of conditioning on hydraulic conductivity information. The impact of domain size, boundary conditions, heterogeneity and non-stationarity of hydraulic conductivity on the prediction of a well catchment is explored. The results are compared against Monte Carlo simulations and semi-analytical solutions available in the literature. The methodology is applicable to both infinite and bounded domains and is free of distributional assumptions (and so applies to both Gaussian and non-Gaussian log hydraulic conductivity fields) and formally includes the effect of conditioning on available information.  相似文献   

12.
This paper proposes a multiscale flow and transport model which can be used in three-dimensional fractal random fields. The fractal random field effectively describes a field with a high degree of variability to satisfy the one-point statistics of Levy-stable distribution and the two-point statistics of fractional Levy motion (fLm). To overcome the difficulty of using infinite variance of Levy-stable distribution and to provide the physical meaning of a finite domain in real space, truncated power variograms are utilized for the fLm fields. The fLm model is general in the sense that both stationary and commonly used fractional Brownian motion (fBm) models are its special cases. When the upper cutoff of the truncated power variogram is close to the lower cutoff, the stationary model is well approximated. The commonly used fBm model is recovered when the Levy index of fLm is 2. Flow and solute transport were analyzed using the first-order perturbation method. Mean velocity, velocity covariance, and effective hydraulic conductivity in a three-dimensional fractal random field were derived. Analytical results for particle displacement covariance and macrodispersion coefficients are also presented. The results show that the plume in an fLm field moves slower at early time and has more significant long-tailing behavior at late time than in fBm or stationary exponential fields. The proposed fractal transport model has broader applications than those of stationary and fBm models. Flow and solute transport can be simulated for various scenarios by adjusting the Levy index and cutoffs of fLm to yield more accurate modeling results.  相似文献   

13.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

14.
In this study, we derive analytical solutions of the first two moments (mean and variance) of pressure head for one-dimensional steady state unsaturated flow in a randomly heterogeneous layered soil column under random boundary conditions. We first linearize the steady state unsaturated flow equations by Kirchhoff transformation and solve the moments of the transformed variable up to second order in terms of σY and σβ, the standard deviations of log hydraulic conductivity Y=ln(Ks) and of the log pore size distribution parameter β=ln(α). In addition, we also give solutions for the mean and variance of the unsaturated hydraulic conductivity. The analytical solutions of moment equations are validated via Monte Carlo simulations.  相似文献   

15.
Contaminant transport in a strongly heterogeneous stratified formation whose log hydraulic conductivity distribution has a variance greater than unity is investigated. Four kinds of waste leakage scenario are studied. They are: (1) continuous waste leakage from landfills; (2) temporal waste leakage from landfills; (3) continuous deep-well injection wastes; and (4) temporal deep-well injection wastes. Ensemble average concentrations and variances of concentration distributions are calculated for the four scenarios. The results in this paper show that when heterogeneity of a formation increases, transport in this formation differs significantly from the linear solutions which assume that the variances of log hydraulic conductivity are less than unity.  相似文献   

16.
In this work, a stochastic methodology is applied to analyze the variability of the poroelastic response of the heterogeneous medium at the field scale. To solve the problem analytically, we restrict our attention to the one-dimensional models, where fluid flow as well as deformation occurs in one direction only under a constant applied stress. Assuming statistic homogeneity, the closed-form solutions that describe the variability of fluid pressure head, and a solid's strain and displacement are developed using a spectral approach based on Fourier–Stieltjes representations for the perturbed quantities. The influence of the correlation length of the log hydraulic conductivity on these results is investigated. It is found that the variances of the solid's strain and displacement increase with the correlation length of the log hydraulic conductivity, while the correlation length of the log hydraulic conductivity plays the role in reducing the variability of the specific discharge.  相似文献   

17.
In this paper, spatial variability in steady one-dimensional unconfined groundwater flow in heterogeneous formations is investigated. An approach to deriving the variance of the hydraulic head is developed using the nonlinear filter theory. The nonlinear governing equation describing the one-dimensional unconfined groundwater flow is decomposed into three linear partial differential equations using the perturbation method. The linear and quadratic frequency response functions are obtained from the first- and second-order perturbation equations using the spectral method. Furthermore, under the assumption of the exponential covariance function of log hydraulic conductivity, the analytical solutions of both the spectrum and the variance of the hydraulic head produced from the linear system are derived. The results show that the variance derived herein is less than that of Gelhar (1977). The reason is that the log transmissivity is linearized in Gelhars work. In addition, the analytical solutions of both the spectrum and the variance of the hydraulic head produced from the quadratic system are derived as well. It is found that the correlation scale and the trend in mean of log hydraulic conductivity are important to the dimensionless variance ratio.  相似文献   

18.
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm.  相似文献   

19.
An ensemble Kalman filter (EnKF) is developed to identify a hydraulic conductivity distribution in a heterogeneous medium by assimilating solute concentration measurements of solute transport in the field with a steady‐state flow. A synthetic case with the mixed Neumann/Dirichlet boundary conditions is designed to investigate the capacity of the data assimilation methods to identify a conductivity distribution. The developed method is demonstrated in 2‐D transient solute transport with two different initial instant solute injection areas. The influences of the observation error and model error on the updated results are considered in this study. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating solute concentration measurements. The larger area of the initial distribution and the more observed data obtained, the better the calculation results. When the standard deviation of the observation error varies from 1% to 30% of the solute concentration measurements, the simulated results by the data assimilation method do not change much, which indicates that assimilation results are not very sensitive to the standard deviation of the observation error in this study. When the inflation factor is more than 1.0 to enlarge the model error by increasing the forecast error covariance matrix, the updated results of the hydraulic conductivity by the data assimilation method are not good at all. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We consider the effect of randomly heterogeneous hydraulic conductivity on the spatial location of time-related capture zones (isochrones) for a non-reactive tracer in the steady-state radial flow field due to a pumping well in a confined aquifer. A Monte Carlo (MC) procedure is used in conjunction with FFT-based spectral methods. The log hydraulic conductivity field is assumed to be Gaussian and stationary, with isotropic exponential correlation. Various degrees of domain heterogeneity are considered and stability and accuracy of the MC procedure is examined. The location of an isochrone becomes uncertain due to heterogeneity, and it is strongly influenced by hydraulic conductivity variance. The probability that a particle released at a point in the aquifer is pumped by the well within a given time is identified. We propose a new expression for the probabilistic spatial distribution of isochrones, which is formally similar to the analytical solution for a uniform medium and takes into account the effects of heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号