首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-I宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.  相似文献   

2.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

3.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

4.
Analysis of teleseismic records obtained in two broadband seismic stations of three components located on the Andean region of Colombia is presented in this work. The two stations are located at the Western Cordillera (WC), station BOL, and at the Central Cordillera (CC), station PBLA. The analysis of seismograms was performed by inversion of the receiver functions (RF) in order to obtain the crustal velocity structure beneath the receivers. The receiver function is a spectral ratio obtained from teleseismic earthquakes recorded by broadband seismic stations, which allows the calculation of the velocity structure beneath the receiver by removing source effects in the horizontal components of the seismic traces. Data stacking was performed in order to improve signal to noise ratio and then the data was inverted by using two optimization algorithms: a genetic algorithm (GA), and a simulated annealing algorithm (SA). The present work calculates the receiver functions using teleseismic earthquakes at epicentral distances (Δ) ranging between 30° and 90° and recorded at the two stations within the years 2007 and 2009.Delay times between P and PS waves converted at the Moho boundary were used to constrain the velocity structure. The receiver functions at the stations were generated from seismic events within a broad range of back azimuth. Data from gravity and magnetism were also used during the geophysical survey. The depth of the Moho boundary was found to be at 40 km in the WC beneath station BOL and at 43 km in the CC beneath station PBLA. The upper crust, with a thickness of 5 km, is characterized by a shear wave velocity of about 3.0 km s−1; the shallower layers, at approximately 1.0 km, have shear wave velocities between 2.2 and 2.6 km s−1, which corresponds to sediments overlying the upper crust. These observations support the hypothesis of a thickness of the crust at the root of the mountain range to be between 32 and 50 km. The calculated receiver functions were compared with artificial ones generated from the inversion of 48000 models of horizontal layers for each station using a GA and an SA that allowed a satisfactory coverage of all the sample space in order to avoid non-unique solutions. Beneath station BOL a moderate low-velocity zone (LVZ) was found, which was caused by accretionary processes of the ophiolite complex in the WC.  相似文献   

5.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

6.
Seismic refraction profiles completed in the past twenty years reveal that the top of the basement complex generally lies near sea level in East Antarctica but typically 2 or 3 km below sea level in West Antarctica. Throughout much of East Antarctica the thickness of the layer overlying the basement complex is less than half a kilometer, although a Phanerozoic sequence more than 1 km thick probably underlies the ice at the South Pole. Throughout central West Antarctica, on the other hand, a section one to several kilometers thick generally overlies the basement complex. The observed sedimentary section is no more than one half kilometer thick on either side of the Transantarctic Mountains. Rocks with high seismic velocities typical of the lower continental crust occur within a few kilometers of the surface on both sides of the Transantarctic Mountains. This occurrence lends support to the hypothesis of an abrupt increase in crustal thickness between West and East Antarctica.

In 1969, deep seismic soundings were carried out by the 14th Soviet Antarctic Expedition near the coast of Queen Maud Land. The crustal thickness was found to be about 40 km near the mountains, decreasing to about 30 km near the coast. In the top 15 km of the crust there is a gradual downward increase in P-wave velocity from 6.0 to 6.3 km/sec. The average velocity through the crust is 6.4 km/sec and the measured velocity below the M-discontinuity is 7.9 km/sec.

At the southwestern margin of the Ronne Ice Shelf, near-vertical reflections from the M-discontinuity have been recorded. A mean P-wave velocity of 6 km/sec in the crust was measured, leading to an estimated depth to M of 24 km below sea level.

Seismic surface wave dispersion studies indicate a mean crustal thickness of about 30 km in West Antarctica and about 40 km in East Antarctica. The dispersion data also show that group velocities across East Antarctica are much closer to those along average continental paths than to those across the Canadian shield. The results thus support other indications that central East Antarctica is not a simple crystalline shield.

P′P′-reflections beneath the continent support the existence of a low-velocity channel for P-waves, but show no significant difference in deep structure between Antarctica and other continents.  相似文献   


7.
Seismic velocities under confining pressures to 10 kbar have been measured for rocks of the Ivrea—Verbano and Strona—Ceneri Zones of northern Italy, a metamorphic complex thought to represent a cross-section of the continental crust and crust—mantle boundary. Laboratory-determined compressional wave velocities for schists and gneisses of the amphibolite facies found in the upper levels of the section (having an average density of 2.74 g/cm3) average 6.45 km/sec at pressures between 6 and 10 kbar. These increase with depth to values greater than 7.1 km/sec for amphibolites and rocks of the amphibolite—granulite facies transition and to 7.5 km/sec. (average density 3.06 g/cm3) in intermediate and mafic granulite facies rocks near the base of the section. Compressional wave velocities then abruptly increase to 8.5 km/sec in ultramafic complexes near the Insubric Line. Regional geophysical surveys show that Pg is 6.0 km/sec (density of 2.7 g/cm3), P* is 7.2–7.4 km/sec (density of 3.1 g/cm3) and Pn is 8.1 km/sec, values which are in agreement with the laboratory data when effects of temperature are taken into consideration. Estimated thicknesses of exposed rock units are in reasonable agreement with thicknesses determined for crustal layers in seismic refraction experiments. The agreement between the regional crustal structure and the laboratory-determined values of velocity and density provides strong evidence for the hypothesis that the rocks of this metamorphic complex represent a cross-section of the continental crust of the Po Basin.Using the Ivrea—Verbano and Strona—Ceneri sequence as a model of the continental crust, the crust of northern Italy is shown to consist of a thick series of metamorphic rocks with greenschist facies rocks occupying the uppermost levels. These grade downward into amphibolite facies gneisses and schists with occasional granitic intrusives. The Conrad discontinuity is marked by a change from silicic and intermediate amphibolite facies gneisses to intermediate and mafic granulite facies rocks in which hydrous minerals diminish in abundance and thus represents a distinct transition in terms of both composition and metamorphic grade. The lower crust is dominated by a heterogeneous series of mafic and metapelitic rocks in the granulite facies. Importantly, metasedimentary rocks of intermediate silica content found in the complex can have compressional wave velocities equivalent to velocities in mafic rocks suggesting that the lower continental crust everywhere is not necessarily mafic in composition. Ultramafic complexes near the Insubric Line may represent the upper mantle of the continent and their setting suggests that the continental crust-upper mantle boundary is sharp and is not isochemical.  相似文献   

8.
THE HIGH RESOLUTION SEISMIC TOMOGRAPHIC IMAGE IN QINGHAI—TIBET PLATEAU AND ITS DYNAMIC IMPLICATIONSeasthenospherehadbe  相似文献   

9.
Laboratory samples from the upper oceanic crust (tholeiitic basalt flows) that have not been significantly weathered, hydrothermally altered or fractured have a typical Poisson's ratio of 0.30 ( ) and a compressional velocity of 6.0 km s−1; from the middle crust (dolerite sheeted dykes) a ratio of 0.28 ( ) and a velocity of 6.7 km s−1; from the lower crust (gabbro) a ratio of 0.31 ( ) and a velocity of 7.1 km s−1; and from the uppermost mantle a ratio of 0.24 ( ) and a velocity of 8.4 km s−1. These sample values are representative of the large scale insitu values for the middle and lower crust and for the upper mantle. The upper crust is modified by several processes that decrease the velocity and generally increase Poisson's ratio: (1) the formation of an irregular layer of low temperature weathering generally less than 50 m thick; (2) large scale porosity in the form of drained pillows and lava tubes, of talus and rubble and of large open fractures; (3) where there was a high sedimentation rate over the ridge that formed the crust, hydrothermal alteration and intercalation of basalt and sediments. The Poisson's ratios of both high velocity sediments and of crystalline continental crustal rocks generally are significantly lower than the ratios of oceanic crustal rocks of similar compressional wave velocity. Thus, the use of shear wave velocities should permit the separation of these different formations which frequently cannot be distinguished on the basis of compressional wave seismic refraction data alone.  相似文献   

10.
Archaean crustal thickness for the Dharwar craton is estimated using potash index and Rb?Sr crustal thickness grid. The volcanics of the Dharwar greenstone belts appear to have evolved in a less than 20 km thick crust. Whereas the tonalite-trondhjemite pebbles of the Dharwar conglomerates (3250±150 m.y.) were derived from gneisses that evolved in a crust less than 20 km thick, the bulk of the peninsular gneisses and associated granitoids were emplaced in a crust 25 to 35 km thick. The 2000 m.y. old Closepet granite suite was emplaced in a crust thicker than 30 km. It is deduced that the continental crust in the region thickened from 15 to 35 km during a span of about 1000 m.y. between 3250±150 to 2000 m.y. ago. Calculations show that Archaean gecthermal gradients in Dharwar craton were three to four times steeper when compared to the present 10.5°C/km. The thin crust and the steep geothermal gradients are reflected by the emplacement of high magnesia basalts, layered igneous complexes and the strong iron enrichment trend shown by Dharwar metavolcanics.  相似文献   

11.
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China in  相似文献   

12.
During 1973–1977, as part of the International Geodynamic Project, some seismic investigations of the Earth's crust have been carried out by geotraverses of the Tien Shan—Pamirs—Karakorum—Himalayas. The seismic data obtained together with other geophysical information, allow the construction and interpretation of the lithospheric section through the Pamirs-Himalayas structure. This section includes thick crust with complex layering, supra-asthenospheric and asthenospheric layers of the upper mantle. The thickness of the Earth's crust increases from 50–55 km in the north, in the Ferghana depression (Tien Shan), to 70–75 km in the south, near the Karakul Lake (Northern Pamir). It varies within 60–65 km for the Central and Southern Pamir, Karakorum and the Inner Himalayas. Its thickness is least (35–37 km) in the south, under the outer margin of the Himalayan foredeep. Extreme gravity minima and depressions on the geoid surface correspond to the regions with maximum thickness of the Earth's crust. The centers of the disturbing masses on the geoid surface are located in the vicinity of the asthenosphere's upper layer; this determines the effect of the whole lithospheric layer, including its asthenospheric layer, at intense changes of gravity anomalies. The asthenospheric upper layer is recorded at a depth of about 120 km, its base at a depth of 200 km, in the northern and southern regions, and 300 km in its central part (Southern Pamir, Karakorum). In the middle asthenospheric layer, wave velocities decrease to 7.5 km/sec, under the base they increase to 8.4 km/sec and reach 9.4 km/sec at a depth of about 400 km. In the supra-asthenospheric layer of the upper mantle, longitudinal and shear wave-velocities slightly increase (by less than 0.1 km/sec) towards its base.  相似文献   

13.
Pn velocity has been computed across the NE India and Moho geometry constrained, using regional earthquake travel times recorded by a network of 30 seismological stations operated during February-May 1993. Using an appropriate velocity model and the arrival times at the network stations, preliminary hypocentres of 16 regional earthquakes provided by NEIC were also improved. The average Pn wave velocity in NE India has been found to be 8.5 ±0.2 km/s. It varies from 8.3 to 8.5 km/s beneath the Shillong Plateau, Mikhir hills and Assam valley, which is significantly higher than those in other parts of India. The crustal thickness in NE India is also high, varying from 45–49 km under the Shillong plateau and the adjoining region to 55–65 km in the convergence zone. The presence of a thick crust and high Pn velocity suggests that the lithosphere in NE India is colder, as also indicated by the observed deeper level (45-51 km) seismicity of the region.  相似文献   

14.
Seismic refraction data collected on Spitsbergen in 1978 are used to obtain a crustal model assuming plane horizontal layering. The observed travel-times and wave forms are compared with those of synthetic seismograms computed for various published crustal models. The more detailed models adequately explain some, but not all, of the features of the synthetics. These models are adjusted, utilizing travel times and wave-form amplitudes until a satisfactory fit is achieved. The best-fitting model consists of a 4-layer crust having thicknesses of 4.1, 10.0 7.4 and 5.8 km and compressional velocities of 4.65, 6.21, 6.30 and 6.65 km/sec with increasing depth. The uppermost mantle has a velocity of 7.90 km/sec. A comparison of observed and synthetic Pn waveforms supports the existence of a thin low-velocity zone beginning at a depth of about 5 km beneath the Moho boundary. An inversion of seismic surface wave group velocity data yields a shear-wave model which is compatible with the compressional wave model.  相似文献   

15.
The three-dimensional shear velocity lithospheric structure at depths from 0 to 70 km beneath the southern Baikal rift system and its surroundings has been imaged by inversion of P-to-SV receiver functions from 46 digital stations operated in two teleseismic international projects in southern Siberia and Mongolia. The receiver functions were determined from teleseismic P waveforms and inverted to obtain depth dependences of S velocities at each station which were related to tectonic structures. The computed vertical and horizontal sections of the 3D shear velocity model imaged a transition from relatively thin crust of the southern Siberian craton to thicker crust in the folded area south and southeast of Lake Baikal, with a local zone of thin crust right underneath the South Baikal basin. The velocity structure beneath the Baikal rift, the mountains of Transbaikalia, Mongolia, and the southern craton margin includes several low-velocity zones at different depths in the crust. Some of these zones may record seismic anisotropy associated with mylonite alignment along large thrusts.  相似文献   

16.
Caledonian eclogite facies shear zones developed from Grenvillian garnet granulite facies anorthosites and gabbros in the Bergen Arcs of western Norway allow direct investigation of the relations between macroscopic structures and crystallographic preferred orientation (CPO) in lower continental crust. Field relations on the island of Holsnøy show that the eclogites formed locally from granulite facies rocks by progressive development of: (1) eclogite adjacent to fractures; (2) eclogite in discrete shear zones (> 2 m thick); (3) eclogite breccia consisting of >80% well-foliated eclogite that wraps around rotated granulite blocks; and (4) anastomosing, subparallel, eclogite facies shear zones 30–100 m thick continuous over distances > 1 km within the granulite terrane. These shear zones deformed under eclogite facies conditions at an estimated temperature of 670 ± 50°C and a minimum pressure of 1460 MPa, which corresponds to depths of >55 km in the continental crust. Detailed investigation of the major shear zones shows the development of a strong foliation defined by the shape preferred orientation of omphacite and by alternating segregations of omphacite/garnet-rich and kyanite/zoisite-rich layers. A consistent lineation throughout the shear zones is defined by elongate aggregates of garnet and omphacite. The CPO of omphacite, determined from five-axis universal stage measurements, shows a strong b-axis maximum normal to foliation, and a c-axis girdle within the foliation plane with weak maxima parallel to the lineation direction. These patterns are consistent with deformation of omphacite by slip parallel to [001] and suggest glide along (010). The lineation and CPO data reveal a consistent sense of shear zone movement, although the displacement was small. Localized faulting of high-grade rocks accompanied by fluid infiltration can be an important mode of failure in the lower continental crust. Field relations show that granulite facies rocks can exist in a metastable state under eclogite facies conditions and imply that the lower crust can host differing metamorphic facies at the same depth. Deformation of granulite and partial conversion to eclogite, such as is exposed on Holsnøy Island, may be an orogenic-scale process in the lowermost crust of collisional orogens.  相似文献   

17.
Teleseismic body waves from broadband seismic stations are used to investigate the crustal and uppermost mantle structure of Stromboli volcano through inversion of the receiver functions (RFs). First, we computed RFs in the frequency domain using a multiple-taper spectral correlation technique. Then, the non-linear neighbourhood algorithm was applied to estimate the seismic shear wave velocity of the crust and uppermost mantle and to define the main seismic velocity discontinuities. The stability of the inversion solution was tested using a range of initial random seeds and model parameterizations. A shallow Moho, present at depth of 14.8 km, is evidence of a thinned crust beneath Stromboli volcano. However, the most intriguing and innovative result is a low S velocity layer in the uppermost mantle, below 32 km. The low S velocity layer suggests a possible partial melt region associated with the volcanism, as also recently supported by tomographic studies and petrological estimations.  相似文献   

18.
《Tectonophysics》1987,144(4):323-335
A 145 km N–S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle.Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km.Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the cratonic lithosphere being about 4% faster than that of the Limpopo mobile belt. The resolution of the technique is such that it is difficult to ascertain whether these differences are features of Precambrian evolution or are due to reactivation of the upper mantle during Karoo igneous and tectonic activity.  相似文献   

19.
在印度洋板块与欧亚板块碰撞、挤压作用下,促使深部物质重新分异、调整和运移,并导致了地壳的短缩增厚,而且造成了高原的整体隆升和深部壳、幔物质的侧向流展。基于青藏高原腹地和周边地域地壳与上地幔的成层速度结构,特别是其特异层序的展布研究表明,青藏高原地壳巨厚,但岩石圈却相对较薄;地壳中于深20±5km处存在一低速层,层速度为5.7±0.1km/s,厚度为8±2km;上地幔软流圈顶部深度为110±10km;下地壳与上地幔盖层物质以地壳低速层为上滑移面,以岩石圈漂曳的上地幔软流圈顶面为下滑移面,在印度洋板块N-NNE向力源作用下在同步运移,即形成了青藏高原腹地和周边地域特异的大陆地球动力学环境。  相似文献   

20.
Hyderabad granitic region (HGR) forms one of the most unusual geotectonic segment of the south Indian shield. Analysis of multiparametric geological, geophysical and IGS-GPS studies have earlier suggested that this region is neotectonically uplifting at a rapid rate. We propose that consequent to such uplift, only a thin veneer of surface granitic layer now remains. In order to quantitatively examine the thickness of highly resistive granitic-gneissic crust below HGR, a audio-magnetotelluric (AMT) / controlled source AMT (CSAMT) experiment was conducted at three separate locations, situated about 50 km east of Hyderabad. The study reveals a maximum thickness of 5.5 to 6.0 km for the granitic — gneissic crust beneath HGR, which is underlain by thick low resistive exhumed intermediate (granulitic ?) crust. This finding is in sharp contrast to that of a thick granitic-gneissic crust (15–20 km) usually found in comparable late Archaean terrains elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号