首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文在滑坡灾害预测分区的信息模型基础上,重点讨论了灾害预测的计算机制图化的主要过程:因素的数值化,单元边界的确定和彩色图件的绘制。运用中国地质大学计算机系开发的Mapcad系统,在Mv/10000计算机上较好地处理了不规则图幅边界的自然裁剪,不规则单元的输入,以及彩色图件的绘制等问题。  相似文献   

2.
A practical application of a simple and economical solution to landslide hazard zonation based on slope stability analysis was carried out in the Veľká Čausa landslide, Horná Nitra region, central Slovakia. The region is prone to different types of slope deformation controlled by geological structure, physical and mechanical properties of materials, complicated hydrogeological setting, undulating morphology, and man-made influence. Taking into consideration the cause of the landslide, identified as groundwater change, two scenarios of landslide activity have been investigated. Scenario 1 considers the maximum groundwater level recorded from March 1995 to October 1998, corresponding to the period starting from the most recent landslide activity up to the end of remediation work. Scenario 2 considers the maximum groundwater level recorded from November 1998 to December 2004, after the remediation works, and corresponding to the actual situation of the landslide. It has been found from this study that slope angle has the highest influence on landslide instability in the Veľká Čausa landslide. Therefore, high resolution Digital Elevation Model (DEM) is essential for obtaining reasonable results. In addition, an appropriate selection of the model input parameters (e.g., shear strength) is very important. The validation between the calculated landslide hazard zonation map and results of monitoring survey were examined. The results show moderate to good agreement with the inclinometric and geodetic measurements. It was also verified that the most active part of the landslide is the north-western side.  相似文献   

3.
The paper deals with a methodology for quantitative landslide hazard and risk assessments over wide-scale areas. The approach was designed to fulfil the following requirements: (1) rapid investigation of large study areas; (2) use of elementary information, in order to satisfy the first requirement and to ensure validation, repetition and real time updating of the assessments every time new data are available; (3) computation of the landslide frequency of occurrence, in order to compare objectively different hazard conditions and to minimize references to qualitative hazard attributes such as activity states. The idea of multi-temporal analysis set forth by Cardinali et al. (Nat Hazards Earth Syst Sci 2:57–72, 2002), has been stressed here to compute average recurrence time for individual landslides and to forecast their behaviour within reference time periods. The method is based on the observation of the landslide activity through aerial-photo surveys carried out in several time steps. The output is given by a landslide hazard map showing the mean return period of landslides reactivation. Assessing the hazard in a quantitative way allows for estimating quantitatively the risk as well; thus, the probability of the exposed elements (such as people and real estates) to suffer damages due to the occurrence of landslides can be calculated. The methodology here presented is illustrated with reference to a sample area in Central Italy (Umbria region), for which both the landslide hazard and risk for the human life are analysed and computed. Results show the powerful quantitative approach for assessing the exposure of human activities to the landslide threat for a best choice of the countermeasures needed to mitigate the risk.An erratum to this article can be found at  相似文献   

4.
Landslide susceptibility zonation (LSZ) is necessary for disaster management and planning development activities in mountainous regions. A number of methods, viz. landslide distribution, qualitative, statistical and distribution-free analyses have been used for the LSZ studies and they are again briefly reviewed here. In this work, two methods, the Information Value (InfoVal) and the Landslide Nominal Susceptibility Factor (LNSF) methods that are based on bivariate statistical analysis have been applied for LSZ mapping in a part of the Himalayas. Relevant thematic maps representing various factors (e.g., slope, aspect, relative relief, lithology, buffer zones along thrusts, faults and lineaments, drainage density and landcover) that are related to landslide activity, have been generated using remote sensing and GIS techniques. The LSZ derived from the LNSF method, has been compared with that produced from the InfoVal method and the result shows a more realistic LSZ map from the LNSF method which appears to conform to the heterogeneity of the terrain.  相似文献   

5.
基于GIS的滑坡、泥石流灾害危险性区划关键问题研究   总被引:20,自引:3,他引:20  
随着GIS技术的引入,滑坡、泥石流灾害危险性区划的效率和准确性得以大大提高。依据工程地质类比原则,在灾害学理论指导下,结合专家打分、层次分析、人工神经网络、信息量、Logistic回归、统计量等模型方法,以MAPGIS软件为平台,利用C++语言开发了滑坡、泥石流灾害危险性区划评价分析系统;并重点探讨了GIS支持下的滑坡、泥石流灾害危险性区划过程中的因子分析、模型选取、模型复合、单元划分、系统集成、结果评价等关键问题,建立了一整套基于GIS的滑坡、泥石流灾害评价方法体系。应用该系统对长江三峡库区和辽宁省鞍山市分别开展了滑坡、泥石流灾害危险性区划研究,取得了较好的效果。  相似文献   

6.
A shallow landslide triggered by rainfall can be forecast in real-time by modeling the relationship between rainfall infiltration and decrease of slope stability. This paper describes a promising approach that combines an improved three-dimensional slope stability model with an approximate method based on the Green and Ampt model, to estimate the time–space distribution of shallow landslide hazards. Once a forecast of rainfall intensity and slope stability-related data, e.g., terrain and geology data, are acquired, this approach is shown to have the ability to estimate the variation of slope stability of a wide natural area during rainfall and to identify the location of potential failure surfaces. The effectiveness of the estimation procedures described has been tested by comparison with a one-dimensional method and by application to a landslide-prone area in Japan.  相似文献   

7.
A new hazard zonation methodology is applied to the East Coast Bays area of North Shore City, one of the most residentially developed cliffed shorelines in New Zealand. It is based on a series of geotechnical cliff profiles from three pilot study areas (George Gair Lookout, Rahopara Reserve–Kennedy Memorial Park, and Mairangi Bay–Rothesay Bay) which detail many of the variables that influence overall cliff stability. The methodology requires calculation of a Coastal Landslide Hazard Zone (CLHZ) width for each geotechnical profile and is derived by quantifying three factors: the rate of long-term sea-cliff retreat; the amount of horizontal retreat expected from either joint block fall, fault plane failure, or bedding plane failure, coupled with the amount of horizontal retreat resulting from slumping of the top weathered layer; and a safety factor. The rate of long-term sea-cliff retreat is multiplied by a hazard assessment period of 100 years, which is then added with the two other factors to derive a CLHZ width. Finally, the widths are entered into a Geographic Information System (GIS) to delineate a hazard zone. Owing to the very low rates (< 0.1 m a−1) of sea-cliff retreat in the East Coast Bays area, the long-term rate of sea-cliff retreat at each profile location could not be quantified by conventional survey techniques. Instead, a Sea-cliff Vulnerability Index (SVI) was employed to quantify the long-term rate. Weighted variables considered in the SVI include the bedding dip direction, the occurrence of faults and their orientation, sea-cliff aspect, cliff-toe and cliff-face lithology, cliff-top height, and the presence of groundwater seepage. Calculated CLHZ widths along East Coast Bays range between 13 m and 34 m inland of a reference cliff-line in response to spatial variations of the sea-cliff geology and morphology. The widths reflect the estimated degree of risk over the next 100 years from coastal erosion and landslips.  相似文献   

8.
Landslides are serious geohazards that occur under a variety of climatic conditions and can cause many casualties and significant economic losses. Centrifuge modelling, as a representative type of physical modelling, provides a realistic simulation of the stress level in a small-scale model and has been applied over the last 50 years to develop a better understanding of landslides. With recent developments in this technology, the application of centrifuge modelling in landslide science has significantly increased. Here, we present an overview of physical models that can capture landslide processes during centrifuge modelling. This review focuses on (i) the experimental principles and considerations, (ii) landslide models subjected to various triggering factors, including centrifugal acceleration, rainfall, earthquakes, water level changes, thawing permafrost, excavation, external loading and miscellaneous conditions, and (iii) different methods for mitigating landslides modelled in centrifuge, such as the application of nails, piles, geotextiles, vegetation, etc. The behaviors of all the centrifuge models are discussed, with emphasis on the deformation and failure mechanisms and experimental techniques. Based on this review, we provide a best-practice methodology for preparing a centrifuge landslide test and propose further efforts in terms of the seven aspects of model materials, testing design and equipment, measurement methods, scaling laws, full-scale test applications, landslide early warning, and 3D modelling to better understand the complex behaviour of landslides.  相似文献   

9.
A review of assessing landslide frequency for hazard zoning purposes   总被引:11,自引:0,他引:11  
The probability of occurrence is one of the key components of the risk equation. To assess this probability in landslide risk analysis, two different approaches have been traditionally used. In the first one, the occurrence of landslides is obtained by computing the probability of failure of a slope (or the reactivation of existing landslides). In the second one, which is the objective of this paper, the probability is obtained by means of the statistical analysis of past landslide events, specifically by the assessment of the past landslide frequency. In its turn, the temporal frequency of landslides may be determined based on the occurrence of landslides or from the recurrence of the landslide triggering events over a regional extent. Hazard assessment using frequency of landslides, which may be taken either individually or collectively, requires complete records of landslide events, which is difficult in some areas. Its main advantage is that it may be easily implemented for zoning. Frequency assessed from the recurrence of landslide triggers, does not require landslide series but it is necessary to establish reliable relations between the trigger, its magnitude and the occurrence of the landslides. The frequency of the landslide triggers can be directly used for landslide zoning. However, because it does not provide information on the spatial distribution of the potential landslides, it has to be combined with landslide susceptibility (spatial probability analysis) to perform landslide hazard zoning. Both the scale of work and availability of data affect the results of the landslide frequency and restrict the spatial resolution of frequency zoning as well. Magnitude–frequency relationships are fundamental elements for the quantitative assessment of both hazard and risk.  相似文献   

10.
A failed slope may not necessarily require a remedial treatment if it can be shown with confidence that the maximum movement of the slide mass will be within tolerable limits, i.e., not cause loss of life or property. A permanent displacement analysis of a landslide for static and seismic conditions is presented using a continuum mechanics approach. Computed values of displacement for static conditions compare favorably with field measurements and computed values of seismic displacements for a postulated earthquake motion appear reasonable. Also, the seismic displacements using the continuum mechanics approach compare favorably with those obtained using the Newmark sliding block procedure for assessing seismically-induced slope deformations.  相似文献   

11.
12.
Mass movements varying in type and size, some of which are periodically reactivated, affect the urban area of Avigliano. The disturbed and remoulded masses consist of sandy–silty or silty–clayey plastic material interbedded with stone fragments and conglomerate blocks. Five landslides that were markedly liable to rainfall-associated instability phenomena were selected.

The relationships between landslides and rainfall were investigated using a hydrological and statistical model based on long-term series of daily rainfall data. The model was used to determine the return period of cumulative daily rainfall over 1–180 days. The resulting hydrological and statistical findings are discussed with the aim of identifying the rainfall duration most critical to landslides.

The concept of a precipitation threshold was generalized by defining some probability classes of cumulative rainfall. These classes indicate the thresholds beyond which reactivation is likely to occur. The probability classes are defined according to the return period of the cumulative rainfall concomitant with landslide reactivation.  相似文献   


13.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   

14.
Modeling of rainfall-triggered shallow landslide   总被引:5,自引:3,他引:5  
By integrating hydrological modeling with the infinite slope stability analysis, a rainfall-triggered shallow landslide model was developed by Iverson (Water Resour Res 36:1897-1910, 2000). In Iverson’s model, the infiltration capacity is assumed to be equivalent to the saturated hydraulic conductivity for finding pressure heads analytically. However, for general infiltration process, the infiltration capacity should vary with time during the period of rain, and the infiltration rate is significantly related to the variable infiltration capacity. To avoid the unrealistically high pressure heads, Iverson employed the beta-line correction by specifying that the simulated pressure heads cannot exceed those given by the beta line. In this study, the suitability of constant infiltration capacity together with the beta-line correction for hydrological modeling and landslide modeling of hillslope subjected to a rainfall is examined. By amending the boundary condition at ground surface of hillslope in Iverson’s model, the modified Iverson’s model with considering general infiltration process is developed to conduct this examination. The results show that the unrealistically high pressure heads from Iverson’s model occur due to the overestimation of infiltration rate induced from the assumption that the infiltration capacity is identical to the saturated hydraulic conductivity. Considering with the general infiltration process, the modified Iverson’s model gives acceptable results. In addition, even though the beta-line correction is applied, the Iverson’s model still produces greater simulated pressure heads and overestimates soil failure potential as compared with the modified Iverson’s model. Therefore, for assessing rainfall-triggered shallow landslide, the use of constant infiltration capacity together with the beta-line correction needs to be replaced by the consideration of general infiltration process.  相似文献   

15.
Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect.  相似文献   

16.
A highly active collapse sinkhole field in the evaporitic mantled karst of the Ebro river valley is studied (NE Spain). The subsidence is controlled by a NW-SE trending joint system and accelerated by the discharge of waste water from a nearby industrial state. The morphometry, spatial distribution and temporal evolution of the sinkholes have been analysed. The volume of the sinkholes yields a minimum estimate of average lowering of the surface by collapse subsidence of 46 cm. The clustering of the sinkholes and the tendency to form elongated uvalas and linear belts, in a NW–SE direction have a predictive utility and allow the establishment of criteria for a hazard zonation. With the precipitation record supplied by a pluviograph and periodic cartographic and photographic surveys the influence of heavy rainfall events on the triggering of collapses has been studied.  相似文献   

17.
Landslides are one of the most destructive phenomena of nature that cause damage to both property and life every year, and therefore, landslide susceptibility zonation (LSZ) is necessary for planning future developmental activities. In this paper, apart from conventional weighting system, objective weight assignment procedures based on techniques such as artificial neural network (ANN), fuzzy set theory and combined neural and fuzzy set theory have been assessed for preparation of LSZ maps in a part of the Darjeeling Himalayas. Relevant thematic layers pertaining to the causative factors have been generated using remote sensing data, field surveys and Geographic Information System (GIS) tools. In conventional weighting system, weights and ratings to the causative factors and their categories are assigned based on the experience and knowledge of experts about the subject and the study area to prepare the LSZ map (designated here as Map I). In the context of objective weight assignments, initially the ANN as the black box approach has been used to directly produce an LSZ map (Map II). In this approach, however, the weights assigned are hidden to the analyst. Next, the fuzzy set theory has then been implemented to determine the membership values for each category of the thematic layer using the cosine amplitude method (similarity method). These memberships are used as ratings for each category of the thematic layer. Assuming weights of each thematic layer as one (or constant), these ratings of the categories are used for the generation of another LSZ map (Map III). Subsequently, a novel weight assignment procedure based on ANN is implemented to assign the weights to each thematic layer objectively. Finally, weights of each thematic layer are combined with fuzzy set derived ratings to produce another LSZ map (Map IV). The maps I–IV have been evaluated statistically based on field data of existing landslides. Amongst all the procedures, the LSZ map based on combined neural and fuzzy weighting (i.e., Map IV) has been found to be significantly better than others, as in this case only 2.3% of the total area is found to be categorized as very high susceptibility zone and contains 30.1% of the existing landslide area.  相似文献   

18.
浙江省永嘉县滑坡灾害危险性区划   总被引:7,自引:0,他引:7  
永嘉县是浙江省滑坡灾害发生频繁的区县之一,其滑坡受地质、地形和人类工程活动等因素的影响.本文根据永嘉县滑坡灾害分布情况,选择了影响滑坡分布的主要因素,将各种因子归一化处理后转换成相同分辨率的定量数据,选择了逻辑回归分析模型和信息量模型进行滑坡灾害危险性评价.在逻辑回归模型中,利用SPSS软件,通过逐步回归分析筛选出影响滑坡的最直接的因子,计算出各个因子的回归系数,得到逻辑回归方程,据此编制了危险性预测分区图.在信息量模型中,通过MAPGIS软件及其二次开发的信息量模型,对永嘉县滑坡灾害进行了危险性区划,并依信息量法的结果编制了该区的危险性预测分区图.两种方法所编制的危险性分区图中高危险区和中危险区重合率达到了87%,具有很高的一致性,起到了相互验证的作用,为滑坡的有效防治提供了依据.最后根据"云娜"台风期间永嘉县实际灾害发生情况的资料分析,新灾害点绝大部分落在危险性预测区中的高危险区,表明模型的预测准确率很高.  相似文献   

19.
滑坡灾害风险评价的系统分析   总被引:19,自引:6,他引:19  
从系统理论的观点出发,提出了滑坡灾害复杂大系统的概念,并以这一概念为基础,探讨了滑坡灾害风险特征及滑坡灾害风险评价的基本内容,提出并系统地阐述了以滑坡危险性分析、承灾体易损性分析和滑坡灾害破坏损失评估为核心内容的滑坡灾害风险评价的系统理论。  相似文献   

20.
The 12 March 2001 landslide at a slate quarry in Okayama, Japan killed three workers. Composite studies based on field surveys of the landslide slope, interviews with local residents and quarry workers, and inspections of hydrological and seismological data have been used to clarify the causes of this slide and its movements. The results indicate that the landslide was enabled firstly by the steepness of the slope, which had been undercut by river; secondly, the structure was that of a dip-slope that was prone to deep-seated slides along bedding planes; thirdly, numerous joints and faults were present. Surprisingly, rainfall, earthquakes, and explosions do not appear to have played any role in the triggering of this slide. The interviews demonstrated that the frequency of precursory failures increased over a period of several hours before the 12 March 2001 landslide. Inspection of the seismograph records and the eyewitness evidence both indicate that the main part of the landslide consisted of two phases of slope failure within 23 s. After the slide, the frequency of the failures gradually decreased with time over a period of several days. Three new terms are proposed for landslides: foreslide, mainslide, and afterslide, following the terms foreshock, main shock, and aftershock used in seismology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号