首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Class II methanol masers are found in close association with OH main-line masers in many star-forming regions, where both are believed to flag the early stages in the evolution of a massive star. We have studied the formation of masers in methanol and OH under identical model conditions for the first time. Infrared pumping by radiation from warm dust at temperatures >100 K can account for the known maser lines in both molecules, many of which develop simultaneously under a range of conditions. The masers form most readily in cooler gas (<100 K) of moderately high density  (105–108 cm-3)  , although higher gas temperatures and/or lower densities are also compatible with maser action. The agreement between the current model (developed for methanol) and the established OH maser trends is very encouraging, and we anticipate that further tuning of the model will further improve such agreement.
We find the gas-phase molecular abundance to be the key determinant of observable maser activity for both molecules. Sources exhibiting both 6668-MHz methanol and 1665-MHz OH masers have a typical flux density ratio of 16; our model suggests that this may be a consequence of maser saturation. We find that the 1665-MHz maser approaches the saturated limit for OH abundances >10−7.3, while the 6668-MHz maser requires a greater methanol abundance >10−6. OH-favoured sources are likely to be less abundant in methanol, while methanol-favoured sources may be less abundant in OH or experiencing warm (>125 K), dense (∼107 cm−3) conditions. These abundance requirements offer the possibility of tying the appearance of masers to the age of the new-born star via models of gas-phase chemical evolution following the evaporation of icy grain mantles.  相似文献   

2.
We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star-forming region G9.62+0.20E for a time-span of more than 2600 d. The earlier reported period of 244 d is confirmed. The results of monitoring the 107 GHz methanol maser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 d of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately  1.6 × 106 cm−3  and  6.0 × 105 cm−3  , respectively.  相似文献   

3.
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between  2 × 104  and  1.5 × 105 yr  . We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H  ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.  相似文献   

4.
We have searched for molecular absorption lines at millimetre wavelengths in 11 gravitational lens systems discovered in the JVAS/CLASS surveys of flat spectrum radio sources. Spectra of only one source 1030+074 were obtained in the 3-, 2- and 1.3-mm bands at the frequencies corresponding to common molecular transitions of CO and HCO+ as continuum emission was not found in any of the other sources. We calculated upper limits to the column density in molecular absorption for 1030+074, using an excitation temperature of 15 K, to be N CO<6.3×1013 cm−2 and N HCO+<1.3×1011 cm−2 , equivalent to hydrogen column density of the order N H<1018 cm−2 , assuming standard molecular abundances. We also present the best upper limits of the continuum at the lower frequency for the other 10 gravitational lenses.  相似文献   

5.
Phase-referenced observations of 13 star-forming regions in the  2Π1/2, J = 1/2  transition of rotationally excited OH at 4765 MHz have been carried out using MERLIN. Two of the regions were also observed at 4750 MHz and one at 4660 MHz. There were 10 maser detections at 4765 MHz and three non-detections. There were no detections at 4750 and 4660 MHz. The 4765-MHz masers have brightness temperatures of  ∼107 K  at MERLIN resolution (∼50 mas). Several cases of 4765-MHz masers overlapping in position and velocity with 1720- and 1665-MHz masers are reported. There are also isolated 4765-MHz masers with peak flux densities ≥30 times that of any ground-state counterpart. Most of the 4.7-GHz maser spots are unresolved at 50-mas angular resolution, but in four of the nearest sources the maser spots are resolved, indicating a characteristic size for 4765-MHz maser regions of ∼100 au. In W3(OH) we discovered that 20 per cent of the 4765-MHz emission comes from a narrow low-brightness filament that stretches north–south for ∼1.0 arcec (∼2200 au) between two previously known 4765-MHz maser spots. The filament appears in projection against the H  ii region and has a brightness temperature of  ∼4 × 105 K  . There are matching absorption features in mainline transitions of highly excited OH. The filament may trace a shock front in a rotating disc.  相似文献   

6.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

7.
A southern hemisphere survey of methanol emission sources in two millimetre-wave transitions has been carried out using the ATNF Mopra millimetre telescope. 16 emission sources have been detected in the 31–40 A+ transition of methanol at 107 GHz, including six new sources exhibiting class II methanol maser emission features. Combining these results with the similar northern hemisphere survey, a total of eleven 107-GHz methanol masers have been detected. A survey of the methanol emission in the 00–1−1 E transition at 108 GHz has resulted in the detection of 16 sources; one of them showing maser characteristics. This is the first methanol maser detected at 108 GHz, presumably of class II. The results of large velocity gradient statistical equilibrium calculations confirm the classification of these new sources as class II methanol masers.  相似文献   

8.
The multi-transitional observations of CS molecules towards the NGC 2071 core have been re-analysed by using a tri-dimensional Monte Carlo radiative transfer code. Better agreement with the observations is made by an introduction of clumpiness to this model than by smoothly varying density to the 1D microturbulent one. The best-fitting model shows that, when a unique density is assumed for clumps, the volume filling factor of the clumps varies as r −2 with an average of ∼5 per cent over the entire core, and that the H2 number density and the CS abundance of the clump relative to H2 are ∼ 2 × 106 cm−3 and ∼ 6 × 10−10, respectively. The radial density gradient ∝ r −2 obtained from our clumpy core model is steeper than that (∝ r −1.3) obtained from the microturbulent model. Since all clumps are subject to random bulk motions in this 3D clumpy macroturbulent model, synthesized line profiles do not show self-absorption dips even for opaque transitions and the resulting linewidth is in good accordance with the observations.  相似文献   

9.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

10.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

11.
An upper limit of the column density of the C5 linear molecule in translucent interstellar clouds is estimated from high-resolution ( R =80 000) and very high signal-to-noise ratio (∼1000) echelle spectra. It is 1012 cm−2 per E ( B − V )=1 (two orders of magnitude lower than that of C2).  相似文献   

12.
We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3σ upper limits derived for glycine conformer I are  3.7 × 1014 cm−2  in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3σ upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of  7.7 × 1012 cm−2  in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of  3.0 × 1014 cm−2  in Orion-KL and  6.7 × 1014 cm−2  in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the interstellar medium, but have not been able to plausibly assign these transitions to any carrier.  相似文献   

13.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

14.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

15.
We report here on multifrequency radio observations of the pulsed emission from PSR B1259−63 around the time of the closest approach (periastron) to its B2e companion star. There was a general increase in the dispersion measure (DM) and scatter-broadening of the pulsar, and a decrease in the flux density towards periastron although fluctuation in these parameters were seen on time-scales as short as minutes. The pulsed emission disappeared 16 d prior to periastron and remained undetectable until 16 d after periastron.
The observations are used to determine the parameters of the wind from the Be star. We show that a simple model, in which the wind density varies with radius as r −2, provides a good fit to the data. The wind is highly turbulent with an outer scale of ≤1010 cm and an inner scale perhaps as small as 104 cm, a mean density of ∼106 cm−3 and a velocity of ∼2000 km s−1 at a distance of ∼50 stellar radii. We find a correlation between DM variations and the pulse scattering times, suggesting that the same electrons are responsible for both effects.  相似文献   

16.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

17.
We present VLA observations of the ( J , K )=(1, 1), (2, 2), (3, 3) and (4, 4) inversion transitions of NH3 toward the HW 2 object in Cepheus A, with 1-arcsec angular resolution. Emission is detected in the main hyperfine line of the first three transitions. The NH3(2, 2) emission shows a non-uniform 'ring' structure, which is more extended (3 arcsec) and intense than the emission seen in the (1, 1) and (3, 3) lines. A rotational temperature of ∼ 30–50 K and a lower limit to the mass of ∼ 1 ( X NH3/10−8)−1 M are derived for the ring structure. The spatio-kinematical distribution of the NH3 emission does not seem to be consistent with a simple circumstellar disc around the HW 2 thermal biconical radio jet. We suggest that it represents the remnant of the parental core from which both the inner 300-au (0.4 arcsec) disc, traced by the water maser spots previously found in the region, and the central object have formed. The complex velocity field of this core is probably produced from bound motions (similar to those of the inner disc) and from interaction with outflowing material.  相似文献   

18.
Using MERLIN with 0.2-arcsec resolution we have observed neutral hydrogen absorption against the central region of the starburst galaxy NGC 3628. The central region resolves into ∼16 continuum components at 1.4 GHz. From comparison with published 15-GHz data, we infer that these components are supernova remnants, although three components may be consistent with a weak active galactic nucleus. Neutral hydrogen absorption is seen against the continuum emission with column densities ∼1022 cm−2. The absorption appears to be from two separate absorbing structures. Assuming a simple morphology, the main velocity structure can be attributed to a ring of neutral gas with a radius 130 pc rotating around a central starburst with a velocity gradient of 1270 km s−1 kpc−1. From simple assumptions, the mass interior to this ring is 0.9 × 109 M. The second absorption structure may represent outflow from the starburst region or a large-scale galactic structure. Alternatively the absorption structure may be non-axisymmetric, such as a bar.  相似文献   

19.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

20.
We report the detection of the slow-moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well-resolved narrow (full width at zero intensity, FWZI ∼180 km s−1) P Cygni profile, both in Hα and Hβ, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density ( n  ≥ 107 cm−3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号