首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch.  相似文献   

2.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Using heat as a tracer allows for estimation of ground water recharge rates based on subsurface temperature measurements. While possible in theory, it may be difficult in practice to discriminate the effects of climate from the effects of ground water advection. This study uses synthetic simulations to determine the influence of variability of ground surface temperature (GST) on the ability to estimate vertical specific discharge from temperature profiles. Results suggest that in cases where temperature measurements are sufficiently deep and specific discharge is sufficiently high, estimates of specific discharges will be reasonably accurate. Increasing the number of times temperatures are measured, or producing models that incorporate variations in GST, will increase the reliability of any studies using temperatures to estimate specific discharge. Furthermore, inversions of temperature measurements should be combined with other methods of estimating recharge rates to improve the reliability of recharge estimates.  相似文献   

4.
The knowledge of hydraulic properties of aquifers is important in many engineering applications. Careful design of ground‐coupled heat exchangers requires that the hydraulic characteristics and thermal properties of the aquifer must be well understood. Knowledge of groundwater flow rate and aquifer thermal properties is the basis for proper design of such plants. Different methods have been developed in order to estimate hydraulic conductivity by evaluating the transport of various tracers (chemical, heat etc.); thermal response testing (TRT) is a specific type of heat tracer that allows including the hydraulic properties in an effective thermal conductivity value. Starting from these considerations, an expeditious, graphical method was proposed to estimate the hydraulic conductivity of the aquifer, using TRT data and plausible assumption. Suggested method, which is not yet verified or proven to be reliable, should be encouraging further studies and development in this direction.  相似文献   

5.
Depth-discrete aquifer in formal ion was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and hulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of Lime and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge lest data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology.
Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity, Tracer lest and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated lo be 73 ft/d, approximately three limes higher than that calculated using the full length of the screened test interval.  相似文献   

6.
Data from a large-scale canal-drawdown test were used to estimate the specific yield (sy) of the Biscayne Aquifer, an unconfined limestone aquifer in southeast Florida. The drawdown test involved dropping the water level in a canal by about 30 cm and monitoring the response of hydraulic head in the surrounding aquifer. Specific yield was determined by analyzing data from the unsteady portion of the drawdown test using an analytical stream-aquifer interaction model (Zlotnik and Huang 1999). Specific yield values computed from drawdown at individual piezometers ranged from 0.050 to 0.57, most likely indicating heterogeneity of specific yield within the aquifer (small-scale variation in hydraulic conductivity may also have contributed to the differences in sy among piezometers). A value of 0.15 (our best estimate) was computed based on all drawdown data from all piezometers. We incorporated our best estimate of specific yield into a large-scale two-dimensional numerical MODFLOW-based ground water flow model and made predictions of head during a 183-day period at four wells located 337 to 2546 m from the canal. We found good agreement between observed and predicted heads, indicating our estimate of specific yield is representative of the large portion of the Biscayne Aquifer studied here. This work represents a practical and novel approach to the determination of a key hydrogeological parameter (the storage parameter needed for simulation and calculation of transient unconfined ground water flow), at a large spatial scale (a common scale for water resource modeling), for a highly transmissive limestone aquifer (in which execution of a traditional pump test would be impractical and would likely yield ambiguous results). Accurate estimates of specific yield and other hydrogeological parameters are critical for management of water supply, Everglades environmental restoration, flood control, and other issues related to the ground water hydrology of the Biscayne Aquifer.  相似文献   

7.
A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green’s function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx (q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.  相似文献   

8.
Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand.  相似文献   

9.
Sub-surface temperature fields may be considerably affected by active ground water systems, thereby seriously hampering the interpretation of heat flow data. Quantitative evaluation of the convective component of heat transfer is thus very important in cases such as large sedimentary basins with vast underground water circulation. We propose in this study a simple model of horizontal aquifer. This model was used to examine the effect of the lateral convection on the surface heat flow near the recharge zone of basinal margins. The perturbation of the heat flow field above the aquifer was calculated for various aquifer geometry and various flow velocities and the regional scale dependence of the perturbation on the hydraulic properties of the aquifer was demonstrated. The model was applied to the Bohemian Cretaceous Basin and it was shown that within a few kilometres from the recharge zones the observed surface heat flow may be underestimated by up to several tens of percent. The procedure was tested in two locations in this area, in an attempt to make hydrogeological corrections to the measured heat flow values in several boreholes.  相似文献   

10.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

11.
A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time‐varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one‐dimensional temperature profiles under saturated flow conditions to assess groundwater/surface‐water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.  相似文献   

12.
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.  相似文献   

13.
Characterization of the hydraulic properties of fractures in chalk   总被引:3,自引:0,他引:3  
Nativ R  Adar E  Assaf L  Nygaard E 《Ground water》2003,41(4):532-543
  相似文献   

14.
A main purpose of groundwater inverse modeling lies in estimating the hydraulic conductivity field of an aquifer. Traditionally, hydraulic head measurements, possibly obtained in tomographic setups, are used as data. Because the groundwater flow equation is diffusive, many pumping and observation wells would be necessary to obtain a high resolution of hydraulic conductivity, which is typically not possible. We suggest performing heat tracer tests using the same already installed pumping wells and thermometers in observation planes to amend the hydraulic head data set by the arrival times of the heat signals. For each tomographic combinations of wells, we recommend installing an outer pair of pumping wells, generating artificial ambient flow, and an inner well pair in which the tests are performed. We jointly invert heads and thermal arrival times in 3-D by the quasi-linear geostatistical approach using an efficiently parallelized code running on a mid-range cluster. In the present study, we evaluate the value of heat tracer versus head data in a synthetic test case, where the estimated fields can be compared to the synthetic truth. Because the sensitivity patterns of the thermal arrival times differ from those of head measurements, the resolved variance in the estimated field is 6 to 10 times higher in the joint inversion in comparison to inverting head data only. Also, in contrast to head measurements, reversing the flow field and repeating the heat-tracer test improves the estimate in terms of reducing the estimation variance of the estimate. Based on the synthetic test case, we recommend performing the tests in four principal directions, requiring in total eight pumping wells and four intersecting observation planes for heads and temperature in each direction.  相似文献   

15.
A new computer program, 1DTempPro, is presented for the analysis of vertical one‐dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2‐Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat‐transport equations. Pre‐ and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface‐water exchange and also hydraulic conductivity for cases where hydraulic head is known.  相似文献   

16.
Artesian springs are localized aquifer outlets that originate when pressurized ground water is allowed to rise to the surface. Computing artesian discharge directly is often subject to practical difficulties such as restricted accessibility, abundant vegetation or slow flow rates. These circumstances call for indirect approaches to quantify flow. This paper presents a method to estimate ground water discharge through an upwelling spring by means of a three‐layer steady‐state groundwater flow model. Model inputs include on‐site measurements of vertical sediment permeability, sediment temperatures and hydraulic gradients. About 70 spring bed piezometers were used to carry out permeability tests within the spring sediments, as well as to quantify the hydraulic head at different depths below the discharge point. Sediment temperatures were measured at different depths and correlated to permeabilities in order to demonstrate the potential of temperature as a substitute for cumbersome slug tests. Results show that the spatial distribution of discharge through the spring bottom is highly heterogeneous, as sediment permeability varies by several orders of magnitude within centimetres. Sensitivity analyses imply that geostatistical interpolation is irrelevant to the results if field datasets come from a sufficiently high resolution of piezometric records. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Cox MH  Su GW  Constantz J 《Ground water》2007,45(2):187-195
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system.  相似文献   

18.
The interaction of geomechanics and flow within a soil body induces deformation and pore pressure change. Deformation may change hydrogeological and elastic properties, which alters the mechanical behaviour and results in non‐linearity. To investigate this interaction effect in a heterogeneous porous medium, a stochastic poroelastic model is proposed. Monte Carlo simulations are performed to determine the mean and uncertainty of the parameter changes, displacement, and change in pore water pressure. Hydraulic conductivity is treated as the only random variable in the coupled geomechanics‐flow system due to its large variation compared to other mechanical and hydrogeological properties in natural environments. The three considered non‐linear models for the interaction between parameters and deformation are those that consider (1) porosity and hydraulic conductivity; (2) porosity and Young's modulus; and (3) a combined effect that includes porosity, hydraulic conductivity, and Young's modulus. Boundary effects on the coupled system are also explored. The relationships between changes of porosity, hydraulic conductivity, and Young's modulus are analytically shown to be non‐linear. Among the considered parameters, the deformation effect induces the largest reduction in hydraulic conductivity. The deformation‐induced change in hydraulic conductivity shows the most significant effect on the mean and variance of the change in pore water pressure and displacement, while changes in Young's modulus have the least effect. When the deformation effect is considered, the superposition relationship does not exist in the mean displacement and mean change in pore water pressure for the three scenarios considered; it exists for the case without deformation effects. Deformation also causes a reduction in the effective hydraulic conductivity for the whole domain. The scenario that considers both loading and discharge boundaries has larger changes in hydrogeological and geo‐mechanical parameters than those in scenarios that consider loading and discharge boundaries separately. The results indicate that the interaction between deformation and changes in parameters has a profound effect on the poroelastic system. The effect of deformation should thus be considered in modelling and practice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In many practical applications, the rates for ground water recharge and discharge are determined based on the analytical solution developed by Bredehoeft and Papadopulos (1965) to the one‐dimensional steady‐state heat transport equation. Groundwater flow processes are affected by the heterogeneity of subsurface systems; yet, the details of which cannot be anticipated precisely. There exists a great deal of uncertainty (variability) associated with the application of Bredehoeft and Papadopulos' solution (1965) to the field‐scale heat transport problems. However, the quantification of uncertainty involved in such application has so far not been addressed, which is the objective of this wok. In addition, the influence of the statistical properties of log hydraulic conductivity field on the variability in temperature field in a heterogeneous aquifer is also investigated. The results of the analysis demonstrate that the variability (or uncertainty) in the temperature field increases with the correlation scale of the log hydraulic conductivity covariance function and the variability of temperature field also depends positively on the position.  相似文献   

20.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号