共查询到20条相似文献,搜索用时 15 毫秒
1.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic 相似文献
2.
冬季南海上层环流动力机制的数值研究 总被引:13,自引:2,他引:13
通过利用一个分区性的正压-斜压衔接模式来探讨冬季南海的上层环流特征及其动力机制,结果表明:(1)在南海北部,流态主要受黑潮的影响,除了东沙群岛西南的大陆架海域以及吕宋岛北部西岸附近各为一反气旋涡外,整个南海北部为一气旋式大环流所控制.(2)在南海南部主要是风生环流,源自粤西沿岸的水体在东北季风的作用下顺南海西边界岸线向南流动,形成一支相当强的西边界流;同时,由于受北康暗沙以南的陆架坡底形效应和β效应的作用,使得在南海南部出现以一个反气旋涡在南沙海槽处产生、发展并向西传播乃至衰减的约50d的周期性过程 相似文献
3.
夏季南海上层环流动力机制的数值研究 总被引:10,自引:0,他引:10
通过利用一个分区性的正压-斜压衔接模式来探讨夏季南海的上层环流特征及其动力机制,结果表明:夏季期间,由于风生环流的不稳定性促使在东沙群岛附近的气旋涡的强度及位置发生变化,并间接导致黑潮侵入南海北部的程度变化以及气旋涡南侧的反气旋式环流、西沙群岛西南侧的气旋涡的强度和范围出现波动现象;在南海南部的北向西边界流由于离岸的西南季风所驱动在中南半岛中部沿岸脱离岸线往东北方向的流动,导致沿岸的水体大量流失而在沿岸形成一支南向补偿流并在西沙群岛西南侧诱生一气旋涡,而上述的离岸西边界流则作顺时针方向流动,从而在南海南部形成反气旋式大环流;在南沙海槽附近出现的局地气旋涡和万安滩附近的气旋涡分别受β效应、底形效应的作用而形成. 相似文献
4.
A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport 总被引:7,自引:1,他引:7
Yuan Dongliang 《海洋学报(英文版)》2002,21(2):187-202
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t 相似文献
5.
利用2009-2012年南海南部海域4个调查航次的CTD资料,计算了南海南部海域的动力高度,分析了季风转换期南海南部上层的环流结构。结果表明:2009年夏初(6月),调查区上层环流结构已经初具夏季形态,越南离岸流已明显出现;2010年秋末冬初(11月),上层环流结构基本转换为冬季环流形态,越南离岸流消失,纳土纳流出现;2011年秋季中期(10月),南海南部的环流处于夏季向冬季转换形态,越南离岸流减弱,但调查区域夏季的反气旋式环流依然存在;2012年9月夏末秋初,南海南部的环流仍然与夏季的形态相近,越南离岸流依然存在,其两侧的环流结构也与夏季相同。本文的分析结果还较为清晰地给出了南海南部环流由夏季向冬季转变的动态过程。 相似文献
6.
Recent progress in studies of the South China Sea circulation 总被引:12,自引:1,他引:12
The South China Sea (SCS) is a semi-enclosed marginal sea with deep a basin. The SCS is located at low latitudes, where the
ocean circulations are driven principally by the Asia-Australia monsoon. Ocean circulation in the SCS is very complex and
plays an important role in both the marine environment and climate variability. Due to the monsoon-mountain interactions the
seasonal spatial pattern of the sea surface wind stress curl is very specific. These distinct patterns induce different basin-scale
circulation and gyre in summer and winter, respectively. The intensified western boundary currents associated with the cyclonic
and anticyclonic gyres in the SCS play important roles in the sea surface temperature variability of the basin. The mesoscale
eddies in the SCS are rather active and their formation mechanisms have been described in recent studies. The water exchange
through the Luzon Strait and other straits could give rise to the relation between the Pacific and the SCS. This paper reviews
the research results mentioned above. 相似文献
7.
Intercomparison of three South China Sea circulation models 总被引:1,自引:1,他引:1
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder… 相似文献
8.
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well. 相似文献
9.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究 总被引:49,自引:8,他引:49
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。 相似文献
10.
In this study, we used the Navy' s Master Oceanographic Observation Data Set(MOODS), consisting of 116019 temperature and 9617 salinity profiles, during 1968- 1984 to investigate the temporal and spatial variabilities of South China Sea thermohaline structures and circulation. For temperature, profiles were binned into 204 monthly data sets from 1968 to 1984 (17 years). For salinity, profiles were binned into 12 climatological monthly data sets due to the data paucity. A two-scale optimal interpolation method was used to establish a three-dimensional monthly-varying gridded data set from MOODS, covering the area of 5°-25°N and 105° - 125°E and the depth from the surface to 400 m. After the gridded data set had been established, both composite analysis and the Empirical Orthogonal Function (EOF) analysis (for temperature only) were used to identify the major thermohaline fratures including annual mean, monthly anomalies, and interannual thermal variabilities. The inverted monthly circulation pattern 相似文献
11.
南海环流动力机制研究综述 总被引:31,自引:9,他引:31
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响. 相似文献
12.
A high resolved two - dimensional linear global diagnostic model combining with the dynamical calculation is used to calculate ve- locity field in the South China Sea(SCS). The study of model results shows that eddy diffusion does not change basic structure of circulation in the SCS and does not change the direction of invasive water, but changes the value of transport considerably espe- cially in straits. The velocity field is not changed whether the wind stress is considered or not. This result shows the circulation is largely determined by a density field which well records most of the important contribution of the wind stress effect. Potential vor- ticity is calculated to testify the dynamics of the model results. The result shows that a good conservation of the nonlinear PV. This indicates most effects of the important nonlinear processes are well recorded in density and the nonlinear term is negligible so that the simplified model is reliable. The model results show the water exchanges between the SCS and open ocean or surrounding seas. Cold deep water invades through Luzon Strait and Warm shallow water is pushed out mainly through Karimata Straits. The model results also reveal the structure of the circulation in the SCS basin. In two circulations of upper and middle layers, a cyclon- ic one in the north and an anti-cyclonic one in the south, reflect the climatologic average of the circulation driven by monsoon. In the deep or bottom layer, these two circulations reflect the topography of the basin. Above the middle layer, invasive water enters westward in the north but the way of invasion of Kuroshio is not clear. Below the deep layer, a current goes down south near the east basin , and invasive water enters in the basin from the west Pacific. 相似文献
13.
基于2000年8月在南海调查航次得到的水文资料,首次采用广义随底坐标形式的改进POM模式对南海夏季环流进行了数值研究.用正交曲线性水平网格覆盖观测区域,在垂向上对近表海面层次采用近似z坐标,而近底层则为随底坐标.在计算海区实际地形及假设的水平均匀而垂直层化的密度分布下,实施的两个数值计算试验表明,本模式采用的垂直坐标方案比传统的σ坐标方案优越,随底坐标模式因压力梯度项在起伏地形下产生的系统计算误差将变得十分的微小.在南海2000年夏季环流的实际计算中,首先对观测资料进行了60d的诊断计算,然后在诊断已得到的动力场结果基础上,又进行了10d左右的预报运行得到半诊断结果.从计算结果来看,它依赖于参数Cvis与Cdif的选择,特别是参数Cvis,文中取值为Cvis=Cdif=008.比较诊断与半诊断两个计算过程的结果,它们在定性上较为一致,在定量上有些差别.这是因为半诊断计算的方法对密度场作适当的动力调整,使其与地形、风场等更加匹配.在大尺度环流结构不受影响的情况下,尽可能地消除了小尺度噪声,可使计算得到的流场更为清晰.2000年8月南海计算区域环流的最大特点是多涡结构,其中有些反气旋暖涡和气旋式冷涡相间分布.在越南东南海域自表层至1000m水层稳定存在着一个显著的反气旋暖涡,其中心位置在11°51'N,112°07'E(诊断计算),水平尺度约为300km.此暖涡以东存在一个气旋式冷涡,这两个冷、暖涡是研究海区夏季环流的重要环流特征之一.在计算区域东北部夏季环流以反气旋环流系统为主;在计算区域东南部夏季环流以气旋系统为主;南海夏季环流分布,明显出现西部强化特征. 相似文献
14.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB. 相似文献
15.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。 相似文献
16.
区域性海洋环流数值模式研究及对南海环流与海峡流量的模拟 总被引:2,自引:0,他引:2
基于MOM模式的物理框架,妥善考虑了开边界的物理过程,改造和发展了一个区域海洋数值模式。本模式不仅可以方便地调整开边界条件,使之满足边界的特定物理条件,而且可以方便地做针对性修改,使模式更加可靠。改进后的模式具有MOM模式物理概念明确、公式便于理解、结果便于表达的全部特点,同时克服了MOM模式边界条件不完整、程序不易调整、参数难以改变的缺点。区域性模式比全球模式的计算速度快很多倍,可以成为区域性研究的有效工具。将此模式应用于南海,利用Hellerman&Rosenstein气候态风应力驱动模式10a,得到与全球模式效果相当的结果。模式模拟结果展现了南海流场的季节特征,在模式分辨率下表现出了多涡结构。根据模拟的流场计算了南海与其它海域的水交换通量。在年平均意义下,外海水通过吕宋海峡进入南海,南海水通过台湾海峡、民都洛海峡和卡里马塔海峡流出南海。各海峡水通量具有明显的季节变化。 相似文献
17.
Using the hydrographic data obtained during two nearly simultaneous surveys in June 2015, we carried out semidiagnostic calculations with the help of a finite element model and a modified inverse method, to study the circulation in the northern South China Sea(NSCS) during the early summer of 2015. A number of new circulation features were found.(1) In most of the observation region, a large, basin-scale anticyclonic gyre appeared south of the 50-m isobath, which contained anticyclonic eddies. One anticyclonic eddy existed from the sea surface to 50-m depth, whose center showed no tilt, while the center of another eddy tilted eastward from the sea surface to 500-m depth. In the eastern part of the observation region, which is west of the Dongsha Islands, there was a sub-basinscale cyclonic gyre containing a cyclonic eddy whose center tilted southward from the sea surface to 200-m depth.(2) There was a cross-continental slope current(CCSC) in the area southwest of the Dongsha Islands. Its volume transport was about 2.0×10~6 m~3/s.(3) From the estimated order of magnitude of the stream function equation, the joint effect term of the baroclinity and relief(JEBAR) and β-effect term are two important dynamic mechanisms affecting the variation of the circulation in the NSCS.(4) The JEBAR, as a transport-generating term, resulted in the dynamic mechanism determining the pattern of the depth-averaged flow across the contours of potential vorticity fH~(–1). Furthermore, we show that the negative values of the JEBAR were the most dominant dynamic mechanism, causing the CCSC southwest of the Dongsha Islands to deflect from the isobaths and veer toward the deep water. The CCSC around the Dongsha Islands was located further southwest during the early summer of2015 than during the fall of 2005(revealed by a published study), which suggests that the location of the CCSC around the Dongsha Islands may vary with season. 相似文献
18.
南海盐度对南海夏季风响应的初步分析 总被引:5,自引:0,他引:5
为分析南海盐度对南海夏季风的响应情况,采用1967-2001年共35年的月平均海洋同化数据(SODA)等资料,利用合成等分析方法,探讨了南海上层盐度与净淡水通量、风应力、Ekman抽吸速度的关系以及不同海域盐度对南海夏季风爆发以及季风强度的响应.结果表明,随着南海夏季风建立,南海北部、东部的盐度降低,南部盐度增加.在强季风年,南海北部沿岸、东部盐度偏低,南海南部马来西亚以北海域盐度偏高;弱季风年南海盐度异常分布则为北部、东部盐度偏高,南部盐度偏低.南海上层盐度对南海夏季风爆发和季风强度的响应均与南海的净淡水通量、风应力、Ekman抽吸速度存在密切关系. 相似文献
19.
20.
Features of eddy kinetic energy and variations of upper circulation in the South China Sea 总被引:8,自引:3,他引:8
The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast of Vietnam coast with the highest energy level 1 400 cm2 ·s~(-2) in both summer and autumn. This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10°and 14.5°N 相似文献