共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
把利用正交潮响应方法对 2 4 8个周期超过 6年的南中国海的TOPEX/Poseidon卫星高度计资料进行潮波分析提取的沿轨分潮调和常数同化到二维非线性潮汐数值模式中去 ,优化模型中的开边界条件和底摩擦系数 ,模拟了南海m1 和M2 分潮的潮汐。所用的同化方法是伴随同化。根据计算结果给出了m1 和M2 分潮的同潮图。计算结果与 5 9个验潮站资料的比较结果是 :m1 分潮的振幅和迟角的平均绝对误差分别是 4.8cm和 8.7°;M2 分潮的振幅和迟角的平均绝对误差分别是 4.3cm和 1 1 .0°,表明计算结果与验潮站资料符合良好。研究结果表明 ,利用伴随同化方法把TOPEX/Poseidon资料同化到潮汐数值模式中去对模式进行校正是有效的 相似文献
3.
4.
5.
6.
为得到中国近海及邻域精度较高的海面地形,同时尽可能减少滤波对海面地形精度的影响,提出了联合卫星测高潮汐分析与XGM2019e地球重力场模型确定海面地形的方法,首先通过T/P系列(包括Jason-1、Jason-2、Jason-3)卫星测高数据潮汐分析得到沿迹点平均海面高,从中扣除根据XGM2019e重力场模型计算相应沿迹点上的大地水准面高得到沿迹点海面地形,最后通过Kriging插值和Gauss滤波得到研究区域内30′×30′海面地形模型。与DTU22同区域海面地形对比整体差异为±4.49 cm,与沿岸长期验潮站实测海面地形对比整体精度为±4.56 cm,高精度的海面地形为研究海流的变化提供了现实依据。 相似文献
7.
建立了一个高分辨率的数据同化模型系统,针对渤黄海潮汐模型开边界进行优化研究。潮汐调和常数提取自沿岸的潮位计或者近海的水位计观测。数据同化系统包含向前积分的正模型和潮汐逆模型,正模型是三维的、有限积分的、非线性的区域海洋模型ROMS,逆模型是三维的、线性的、有限元模型TRUXTON。数据同化系统通过反演正压潮汐边界条件优化结果,最大可能的减少各同化数据源的差异所带来的误差。研究证明,同化结果能有效的减少潮汐开边界水位强迫的误差,模型/观测误差在调整后减小超过50%。基于posterior潮汐开边界重构的M2分潮图同前人的结果一致。 相似文献
8.
基于多颗在轨高度计数据的中国近海平均海平面模型建立 总被引:1,自引:0,他引:1
联合使用Jason-2成功发射3 a来的Jason-2(cycle 001-113)、轨道调整前后的Envisat(cycle 070-107)以及轨道调整后的Jason-1(cycle 263-352)等在轨高度计卫星数据,首先对电离层延迟校正项进行平滑处理,再经过数据编辑和各项地球物理及环境改正后,对周期(cycle)逐一进行统计验证并剔除交叉点不符值异常的数据周期,采用共线处理和交叉点平差削弱海面时变和径向轨道误差的影响,再经参考椭球和参考框架基准的统一,最后选用Shepard方法建立了我国海域及邻海海域(0°~45°N,100°~140°E)2'×2'分辨率的平均海平面模型。将所建立模型与MSS_CNES_CLS01模型和MSS_CNES_CLS10模型进行了比较,不符值RMS分别为8.28和11.65 cm,验证了所开展模型的正确性。 相似文献
9.
利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验 总被引:12,自引:4,他引:12
本研究基于最优控制理论,采用变分数据同化法,通过建立伴随模型,把观测资料同化到陆架海域潮汐数值模型中去,优化开边界条件,以便提高数值预报的精度.潮汐模型的控制方程为考虑平流项、非线性底摩擦和侧向涡动粘性项的非线性浅水方程组.在第Ⅰ部分建立伴随模型和进行“孪生”数值试验的基础上,给出利用验潮站的水位资料以及TOPEX/Poseidon卫星测高数据在黄海、东海进行变分数据同化试验的数值结果.试验表明利用上述资料对模型进行变分同化校正是可行的. 相似文献
10.
11.
Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan 总被引:36,自引:0,他引:36
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide. 相似文献
12.
13.
Ole Baltazar Andersen Karina Nielsen Per Knudsen Chris W. Hughes Rory Bingham Luciana Fenoglio-Marc 《Marine Geodesy》2013,36(6):517-545
AbstractThe ocean mean dynamic topography (MDT) is the surface representation of the ocean circulation. The MDT may be determined by the ocean approach, which involves temporal averaging of numerical ocean circulation model information, or by the geodetic approach, wherein the MDT is derived using the ellipsoidal height of the mean sea surface (MSS), or mean sea level (MSL) minus the geoid as the geoid. The ellipsoidal height of the MSS might be estimated either by satellite or coastal tide gauges by connecting the tide gauge datum to the Earth-centred reference frame. In this article we present a novel approach to improve the coastal MDT, where the solution is based on both satellite altimetry and tide gauge data using new set of 302 tide gauges with ellipsoidal heights through the SONEL network. The approach was evaluated for the Northeast Atlantic coast where a dense network of GNSS-surveyed tide gauges is available. The typical misfit between tide gauge and satellite or oceanographic MDT was found to be around 9?cm. This misfit was found to be mainly due to small scale geoid errors. Similarly, we found, that a single tide gauge places only weak constraints on the coastal dynamic topography. 相似文献
14.
建立南海潮波模式及其伴随同化模式,在传统二维潮波方程的基础上加入了内潮耗散项,考虑了内潮耗散对南海潮波系统的影响,在前人工作基础上,改进了内潮耗散参数化方案,并给出内潮耗散项中地形效应参数的计算公式;通过对比,本文的参数化方案比前人参数化方案能取得更为合理的模拟结果。以63个验潮站和24个TOPEX/Poseidon卫星高度计轨道交叉点处的调和常数作为观测值,利用伴随同化方法来优化模式中的底摩擦系数和内潮耗散系数。为了寻求最优的优化方案,设计了7组数值实验。实验结果表明,实验7先优化内潮耗散系数再优化底摩擦系数的模拟结果最优。利用实验7的模拟结果分析了南海M2分潮的潮波特征,与前人结果基本一致。 相似文献
15.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.
The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.
Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated. 相似文献
The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.
Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated. 相似文献
16.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements. The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow. Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated. 相似文献
17.
A New Methodology for Incorporating Tide Gauge Data in Sea Surface Topography Models 总被引:1,自引:0,他引:1
As part of the Vertical Offshore Reference Frames (VORF) project sponsored by the U. K. Hydrographic Office, a new model for Sea Surface Topography (SST) around the British Isles has been developed. For offshore areas (greater than 30 km from the coast), this model is largely derived from satellite altimetry. However, its accuracy and level of detail have been enhanced in coastal areas by the inclusion of not only the 60 PSMSL tide gauges with long-term records around the coasts of the United Kingdom and Ireland but also some 385 gauges established at different epochs and for different observation spans by the U. K. Admiralty. All tide gauge data were brought into a common reference frame by a combination of datum models and direct GPS observations, but a more significant challenge was to bring all short-term sea level observations to an unbiased value at a common epoch. This was achieved through developing a spatial-temporal correlation model for the variations in mean sea level around the British Isles, which in turn meant that gauges with long-term observation spans could be used as control points to improve the accuracy of Admiralty gauges. It is demonstrated that the latter can contribute point observations of mean sea level (MSL) with a precision of 0.078 m. A combination of least squares collocation and interpolation was developed to merge the coastal point and offshore gridded data sets, with particular algorithms having to be developed for different configurations of coastal topology. The resulting model of sea surface topography is shown to present a smooth transition from inshore coastal areas to offshore zones. Further benefits of the techniques developed include an enhanced methodology for detecting datum discontinuities at permanent tide gauges. 相似文献
18.
Bang-Fuh CHEN 《中国海洋工程》2007,21(4):659-675
In multiresolution analysis(MRA)by wavelet function Daubechies(db),we decompose the signal to two parts,the low and high frequency content.The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform.The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model.That is,the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved. 相似文献
19.
In this study, to meet the need for accurate tidal prediction, the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N, 99°–121°E). Seven tide models, namely, DTU10, EOT11 a, FES2014, GOT4.8,HAMTIDE12, OSU12 and TPXO8, were considered. The accuracy of eight major tidal constituents(i.e., Q1, O1, P1,K1, N2, M2, S2 and K2) were assessed for the shallow water and coastal areas based ... 相似文献