首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 4-km synthesis radio telescope has recently been commissioned at Ootacamund, India for operation at 327 MHz. It consists of the Ooty Radio Telescope (530 m × 30 m) and 7 small antennas which are distributed over an area of about 4 km × 2 km. It has a coverage of about ± 40‡ in declination δ. The beam-width is about 40 arcsec × 90 arcsec at δ = 0‡ and about 40 arcsec × 50 arcsec at δ = 40‡. The sensitivity attained for a 5:1 signal-to-noise ratio is about 15 m Jy after a 10-hour integration. The observational programmes undertaken and some of the results obtained recently are summarized. The radio halo around the edge-on spiral NGC 4631 is found to have a larger scale-height at 327 MHz than is known at higher frequencies. Mapping of interesting radio galaxies at 327 MHz is being carried out; preliminary results for 0511-305 (∼2 Mpc) and 1333-337 (∼750 kpc) are summarized. The very-steep-spectrum radio source in the Abell cluster A85 is found to be resolved; since it has no obvious optical counterpart, it is conceivable that it is a remnant of past activity of a galaxy that has drifted away in about 109 years.  相似文献   

2.
We have observed the large supernova remnant Cygnus Loop at 34.5 MHz with the low frequency radio telescope at Gauribi-danur, India. A radio map of the region with a resolution of 26 arcmin × 40 arcmin (α × δ) is presented. The integrated flux density of the Cygnus Loop at this frequency is 1245 ± 195 Jy. The radio fluxes of different parts of the nebula at this frequency were also measured and used to construct their spectra. It is found that the spectrum of the region associated with the optical nebulosity NGC 6992/5 is not flat at low frequencies, and also exhibits a break at a frequency around 400 MHz. The spectrum of the region associated with NGC 6960 also shows a break but around 1000 MHz, while the spectrum of the region associated with NGC 6974 is straight in the entire frequency range 25 to 5000 MHz. The implication of these results on the basis of existing theories of the origin of radio emission from supernova remnants is discussed.  相似文献   

3.
Jupiter radio emission is known to be the most powerful nonthermal planetary radiation. In recent years specifically space-based observations allow us to permanently cover a large frequency band(from 100 kHz up to 40 MHz combined with ground-based telescopes)of the Jovian spectrum. The Plasma and Wave Science experiment onboard Galileo enables the observation of Jovian kilometric and hectometric emissions; Wind/WAVES and ground-based telescopes (mainly Decametric Array in Nancay, France, and UTR-2 in Kharkov, Ukraine) cover also hectometric and mainly decametric emissions. Specific geometrical configurations between Cassini approaching Jupiter and Wind spacecraft orbiting Earth, with Galileo orbiting Jupiter and Wind, in combination with ground-based observations provide a new approach to perform Jovian radio tomography. The tomography technique is used to analyze ray paths of Jovian radio emission observed in different directions (e.g. solar and anti-solar direction) and for different declination of Earth. The developments of Jovian radio emission tomography in recent years treated refraction effects and its connection to the local magnetic field in the radio source as well as the radio wave propagation through the Io torus and the terrestrial ionosphere. Most recently ground-based multi-site and simultaneous Jupiter decametric radio observations by means of digital spectropolarimeter and waveform receiver provide the basis of a new data analysis treatment. The above addressed topics are without exemption deeply connected to the plasma structures the radio waves are generated in and propagating through. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Jovian decametric radio emission (DAM) observations from five stations operated by the Goddard Space Flight Centre (GSFC) and from the University of Colorado, Boulder, are used to explore the connection between DAM activity and the interplanetary magnetic field (IMF). Assuming that the IMF sector structure corotates with the Sun, IMF sector boundary crossing times at the orbit of Jupiter have been determined. It is found that in both the frequency ranges covered (16.7 MHz and 22.2 MHz), Jovian DAM activity increases as these sector boundaries pass Jupiter.  相似文献   

5.
Most of the radio galaxies with z > 3 have been found using the red-shift spectral index correlation. We have started a programme with the Giant Metrewave Radio Telescope (GMRT) to exploit this correlation at flux density levels about 100 times deeper than the known high-redshift radio galaxies, with an aim to detect candidate high-redshift radio galaxies. Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, 610 and 1412 MHz with the Westerbork Synthesis Radio Telescope (WSRT) and at 1400 and 4860 MHz with the Very Large Array (VLA). We find about 150 radio sources with spectra steeper than 1. About two-thirds of these are not detected in Sloan Digital Sky Survey (SDSS), hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the red-shift.  相似文献   

6.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We have reinvestigated the reported tendency for the extended radio structures associated with bright elliptical galaxies to be oriented preferentially along the optical minor axes. It is found that such a tendency exists only for those galaxies in which the compact radio cores coincident with their nuclei are quite prominent. If the galaxies are divided into two groups according to whether their cores account for less than or greater than 10 per cent of the total flux density at 2.7 GHz, the angle Φ (between the radio axis and the optical minor axis) appears to be uniformly distributed between 0‡ and 90‡ for the former, but is nearly always < 30‡ for the latter group. One possible explanation is that the radio emission from compact cores suffers thermal absorption by ionized gas that is distributed differently in the two groups.  相似文献   

8.
In this paper we present a detailed study of the radio galaxy J1324–3138, located at a projected distance of 2 arcmin from the centre of the Abell cluster of galaxies A3556, belonging to the core of the Shapley Concentration, at an average redshift of z  = 0.05. We have observed J1324–3138 over a wide range of frequencies: at 327 MHz (VLA), 843 MHz (MOST), and at 1376, 2382, 4790 and 8640 MHz (ATCA).   Our analysis suggests that J1324–3138 is a remnant of a tailed radio galaxy, in which the nuclear engine has switched off and the radio source is now at a late stage of its evolution, confined by the intracluster gas. The radio galaxy is not in pressure equilibrium with the external medium, as is often found for extended radio sources in clusters of galaxies. We favour the hypothesis that the lack of observed polarized radio emission in the source is a result of Faraday rotation by a foreground screen, i.e. the source is seen through a dense cluster gas, characterized by a random magnetic field.   An implication of the head–tail nature of the source is that J1324–3138 is moving away from the core of A3556 and that, possibly, a major merging event between the core of A3556 and the subgroup hosting J1324–3138 has already taken place.  相似文献   

9.
The result of the search for, and the observations of radio emission from two groups of isolated neutron stars: AXP 1E 2259+586 and XDINS 1RXS J1308.6+212708 and 1RXS J214303.7+065419 are reported. The observations were carried out on two sensitive transit radio telescopes at a few frequencies in the range 42–112 MHz. The flux densities, mean pulse profiles, as well as, the estimation of the dispersion measures, distances and integrated radio luminosities of all objects are presented. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities.   相似文献   

10.
This paper describes the strong fluctuations in the intensity of radio source PKS 2025-15, observed at 327 MHz, during its occultation by comet Kohoutek (1973f) in 1974, January 5. Possible mechanisms which could produce the observed fluctuations are examined. It is difficult to explain the fluctuations in terms of scintillation produced due to the passage of radio waves through the irregular cometary plasma.No detectable radio emission was observed from the comet at 327 MHz.  相似文献   

11.
High sensitivity observations of radio halos in galaxy clusters at frequencies ν ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties. All clusters belonging to the GMRT Radio Halo Survey with detected or candidate cluster-scale diffuse emission have been imaged at 325 MHz with the GMRT. Few of them were also observed with the GMRT at 240 MHz and 150 MHz. For A 1682, imaging is particularly challenging due to the presence of strong and extended radio galaxies at the center. Our data analysis suggests that thew radio galaxies are superposed to very low surface brightness radio emission extended on the cluster scale, which we present here.  相似文献   

12.
In this article we report the peculiar oscillations in the intensity of microwave (4.15 GHz) emission seen during the impact of K fragment of comet Shoemaker-Levy 9 on July 19, 1994. The oscillations begin at 10h 13m 25s UT suddenly with a frequency of ~0.3 Hz and gradually the frequency of these oscillations increases to ~ 1 Hz. The oscillations are not due to local atmosphere or the radio interference from signals of geostationary satellite. They are intrinsic to the microwave emission from Jupiter during the impact of K fragment. Peak-to-peak amplitude of the oscillations is about 34% of the total microwave emission from Jupiter. If we assume that only 50% of the microwave emission is non-thermal and only the non-thermal emission suffered oscillations, then the oscillations are about 68% of the non-thermal emission from Jupiter. The observations also indicate that there are three continuum enhancements during this event and periodic oscillations almost all through. The third enhancement was the largest and during this enhancement there were some additional aperiodic variations. The aperiodic variations were of the order of few minutes and were possibly generated by the gravity waves. The periodic oscillations could be synchrotron emission modulated by the plasma oscillation in the outer magnetosphere. kg]Key words  相似文献   

13.
We present the improved solar radio spectrograph of the University of Athens operating at the Thermopylae Satellite Telecommunication Station. Observations now cover the frequency range from 20 to 650 MHz. The spectrograph has a 7-meter moving parabola fed by a log-periodic antenna for 100–650 MHz and a stationary inverted V fat dipole antenna for the 20–100 MHz range. Two receivers are operating in parallel, one swept frequency for the whole range (10 spectrums/sec, 630 channels/spectrum) and one acousto-optical receiver for the range 270 to 450 MHz (100 spectrums/sec, 128 channels/spectrum). The data acquisition system consists of two PCs (equipped with 12 bit, 225 ksamples/sec ADC, one for each receiver). Sensitivity is about 3 SFU and 30 SFU in the 20–100 MHz and 100–650 MHz range respectively. The daily operation is fully automated: receiving universal time from a GPS, pointing the antenna to the sun, system calibration, starting and stopping the observations at preset times, data acquisition, and archiving on DVD. We can also control the whole system through modem or Internet. The instrument can be used either by itself or in conjunction with other instruments to study the onset and evolution of solar radio bursts and associated interplanetary phenomena.  相似文献   

14.
We have searched our previously published radio surveys of the Cygnus X region for faint radio point sources that may be associated with luminous stars of the Cyg OB2 association. Five positional coincidences have been found between stars and 1420 MHz radio sources. A particularly interesting example is the Wolf-Rayet star VCLS 146, which has shown a rapid change in 1420 MHz flux density. In addition, sensitive upper limits have been derived for the emission from 14 early-type stars, which help establish the time history of their non-thermal radio emission. Two radio features have been detected which have the properties of cometary HII regions, except that they are several arcminutes in size. Their detection provides evidence of recent star formation in Cyg OB2.  相似文献   

15.
We present the results of the analysis of thirteen events consisting of dm-spikes observed in Toruń between 15 March 2000 and 30 October 2001. The events were obtained with a very high time resolution (80 microseconds) radio spectrograph in the 1352 – 1490 MHz range. These data were complemented with observations from the radio spectrograph at Ondřejov in the 0.8 – 2.0 GHz band. We evaluated the basic characteristics of the individual spikes (duration, spectral width, and frequency drifts), as well as their groups and chains, the location of their emission sources, and the temporal correlations of the emissions with various phases of the associated solar flares. We found that the mean duration and spectral width of the radio spikes are equal to 0.036 s and 9.96 MHz, respectively. Distributions of the duration and spectral widths of the spikes have positive skewness for all investigated events. Each spike shows positive or negative frequency drift. The mean negative and positive drifts of the investigated spikes are equal to −776 MHz s−1 and 1608 MHz s−1, respectively. The emission sources of the dm-spikes are located mainly at disk center. We have noticed two kinds of chains, with and without frequency drifts. The mean durations of the chains vary between 0.067 s and 0.509 s, while their spectral widths vary between 7.2 MHz and 17.25 MHz. The mean duration of an individual spike observed in a chain was equal to 0.03 s. While we found some agreement between the global characteristics of the groups of spikes recorded with the two instruments located in Toruń and Ondřejov, we did not find any one-to-one relation between individual spikes.  相似文献   

16.
A radio survey, using the Very Large Array at 20 and 90 cm λ has been carried out in the direction of 46 distant Abell clusters (0.1 ≲ z ≲ 0.3) dominated by a cD galaxy (clusters classified to be Bautz-Morgan I type). A radio source coincident with the cD galaxy was detected in 16 clusters. We find that the radio luminosity function of the cD galaxies at 20cm λ, and below the luminosityP 1.4ghz ≲ 1024.5 W Hz-1, is similar to that of brightest ellipticals in less clustered environments. Above this luminosity, the cDs seem to have a higher probability of becoming radio sources. The effect of optical brightness on radio emission is shown to be the same for the two classes. No significantly large population of very-steep-spectrum sources with spectral index α >1.2 (flux density ∝ frequency) was found to be associated with cD galaxies. A significant negative correlation is found between the radio luminosity of the cD galaxy and the cooling-time of the intra cluster medium near the galaxy. We also present evidence that the probability of radio emission from first-ranked galaxies is dependent upon their location relative to the geometrical centres of clusters and thus related to the morphological class and the evolutionary state of the clusters. We argue that both these effects are primarily caused by the dynamical evolution of these distant clusters of galaxies.  相似文献   

17.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

18.
Some 15% of solar flares having a soft X-ray flux above GOES class C5 are reported to lack coherent radio emission in the 100 – 4000 MHz range (type I – V and decimetric emissions). A detailed study of 29 such events reveals that 22 (76%) of them occurred at a radial distance of more than 800″ from the disk center, indicating that radio waves from the limb may be completely absorbed in some flares. The remaining seven events have statistically significant trends to be weak in GOES class and to have a softer non-thermal X-ray spectrum. All of the non-limb flares that were radio-quiet above 100 MHz were accompanied by metric type III emission below 100 MHz. Out of 201 hard X-ray flares, there was no flare except near the limb (R>800″) without coherent radio emission in the entire meter and decimeter range. We suggest that flares above GOES class C5 generally emit coherent radio waves when observed radially above the source.  相似文献   

19.
We have performed a comparative analysis of the fine structure of two decametric type II bursts observed on July 17 and August 16, 2002, with the 1024-channel spectrograph of the UTR-2 radio telescope in the frequency range 18.5–29.5 MHz and with the IZMIRAN spectrograph in the frequency range 25–270 MHz. The August 16 burst was weak, ~2–5 s.f.u., but exhibited an unusual fine structure in the form of broadband fibers (Δf e > 250–500 kHz) that drifted at a rate characteristic of type II bursts and consisted of regular narrow-band fibers (Δf e > 50–90 kHz at 24 MHz) resembling a rope of fibers. The July 17 burst was three orders of magnitude more intense (up to 4500 s.f.u. at 20 MHz) and included a similar fiber structure. The narrow fibers were irregular and shorter in duration. They differed from an ordinary rope of fibers by the absence of absorption from the low-frequency edge and by slow frequency drift (slower than that of a type II burst). Both type II bursts were also observed in interplanetary space in the WIND/WAVES RAD2 spectra, but without any direct continuation. Analysis of the corresponding coronal mass ejections (CMEs) based on SOHO/LASCO C2 data has shown that the radio source of the type II burst detected on August 16 with UTR-2 was located between the narrow CME and the shock front trailing behind that was catching up with the CME. The July 17 type II fiber burst also occurred at the time when the shock front was catching up with the CME. Under such conditions, it would be natural to assume that the emission from large fibers is related to the passage of the shock front through narrow inhomogeneities in the CME tail. Resonant transition radiation may be the main radio emission mechanism. Both events are characterized by the possible generation of whistlers between the leading CME edge and the shock front. The whistlers excited at shock fronts manifest themselves only against the background of enhanced emission from large fibers (similar to the continuum modulation in type IV bursts). The reduction in whistler group velocity inside inhomogeneities to 760 km s?1 may be responsible for the unusually low drift rate of the narrow fibers. The magnetic field inside inhomogeneities determined from fiber parameters at 24 MHz is ~0.9 G, while the density should be increased by at least a factor of 2.  相似文献   

20.
At least six intense nonthermal planetary radio emissions are known in our solar system: the auroral radio emissions from the Earth, Jupiter, Saturn, Uranus and Neptune, and the radio bursts from the Io-Jupiter flux tube. The former are thought to be driven by the solar wind flow pressure or energy flux on the magnetospheric cross-section, while the latter is a consequence of the Io-Jupiter electrodynamic interaction. Although in the solar wind, the flow ram pressure largely dominates the magnetic one, we suggest that the incident magnetic energy flux is the driving factor for all these six radio emissions, and that it can be estimated in the same way in all cases. Consequences for the possible radio emission from extrasolar planets are examined. ‘Hot Jupiters’, if they are magnetized, might possess a radio emission several orders of magnitude stronger than the Jovian one, detectable with large ground-based low-frequency arrays. On the other hand, `giants' analogous to the Io-Jupiter interaction in the form of a pair star/hot-Jupiter are unlikely to produce intense radio emissions, unless the star is very strongly magnetized. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号