首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif exposes a section across the once extensive Avalonian–Cadomian belt, which bordered the northern active margin of Gondwana during late Neoproterozoic. This paper synthesizes the state-of-the-art knowledge on the Cadomian basement of the TBU to redefine its principal component units, to revise an outdated stratigraphic scheme, and to interpret this scheme in terms of a recent plate-tectonic model for the Cadomian orogeny in the Bohemian Massif. The main emphasis of this paper is on an area between two newly defined fronts of the Variscan pervasive deformation to the NW and SE of the Barrandian Lower Paleozoic overlap successions. This area has escaped the pervasive Variscan (late Devonian to early Carboniferous) ductile reworking and a section through the Cadomian orogen is here superbly preserved.The NW segment of the TBU consists of three juxtaposed allochthonous belts of unknown stratigraphic relation (the Kralovice–Rakovník, Radnice–Kralupy, and Zbiroh–?árka belts), differing in lithology, complex internal strain patterns, and containing sedimentary and tectonic mélanges with blocks of diverse ocean floor (meta-)basalts. We summarize these three belts under a new term the Blovice complex, which we believe represents a part of an accretionary wedge of the Cadomian orogen.The SE segment of the TBU exposes the narrow Pi?ín belt, which is probably a continuation of the Blovice complex from beneath the Barrandian Lower Paleozoic, and a volcanic arc sequence (the Davle Group). Their stratigraphic relation is unknown. Flysch units (the ?těchovice Group and Svrchnice Formation) overlay the arc volcanics, and both units contain material derived from volcanic arc. The former was also sourced from the NW segment, whereas the latter contains an increased amount of passive margin continental material. In contrast to the Blovice complex, the flysch experienced only weak Cadomian deformation.The new lithotectonic zonation fits the following tectonic scenario for the Cadomian evolution of the TBU well. The S- to SE-directed Cadomian subduction beneath the TBU led to the involvement of turbidites, chaotic deposits, and 605 ± 39 Ma ocean floor in the accretionary wedge represented by the Blovice complex. The accretionary wedge formation mostly overlapped temporally with the growth of the volcanic arc (the Davle Group) at ~ 620–560 Ma. Upon cessation of the arc igneous activity, the rear of the wedge and some elevated portions of the arc were eroded to supply the deep-water flysch sequences of the ?těchovice Group, whereas the comparable Svrchnice Formation (~ 560 to < 544 Ma) was deposited in a southeasterly remnant basin close to the continental margin. The Cadomian orogeny in the TBU was terminated at ~ 550–540 Ma by slab breakoff, by final attachment of the most outboard ~ 540 Ma oceanic crust, and by intrusion of ~ 544–524 Ma boninite dikes marking the transition from the destructive to transform margin during the early/middle Cambrian.  相似文献   

2.
Detrital zircons from the Ordovician and Devonian sedimentary cover of the Siberian Craton were analyzed for U/Pb geochronology to understand their sediment provenances. Five main age-peaks were identified in the zircon U/Pb age-spectra: (1) Neoarchaean – early Palaeoproterozoic (2.7–2.4 Ga); (2) late Palaeoproterozoic (2.0–1.65 Ga); (3) minor early Neoproterozoic (1.0–0.75 Ga); (4) Ediacaran (0.65–0.60 Ga) and (5) Cambrian – Early Ordovician (0.54–0.47 Ga), reflecting the main magmatic events in the sediment source regions. The oldest zircons (groups 1 and 2) are derived from the Siberian Craton which amalgamated during the Neoarchean – Palaeoproterozoic. The Neoproterozoic zircons (groups 3 and 4) likely sourced from southwestern basement uplifts and Neoproterozoic belts of the Siberian margin such as the Yenisey Ridge and Baikal-Muya region. The provenance of the youngest zircons (group 5) can be traced to the Altai–Sayan fold-belt, where peri-Gondwanan microcontinents and island-arcs accreted to Siberia during late Neoproterozoic – early Palaeozoic progressive consumption of the Palaeo-Asian Ocean.  相似文献   

3.
A complete section of the southern realm of the Variscan orogenic belt can be restored in the Corsica–Sardinia segment. Northern Corsica exposes a nonmetamorphosed Palaeozoic succession lying on Panafrican mica schist related to a microcontinent (most likely Armorica or from a microcontinent from the Hun superterrane) that had drifted away directly from Gondwana. These formations are thrust over the Variscan Internal Zone composed mainly of anatectic high-grade Palaeozoic formations that crop out from central Corsica to northern Sardinia; the metamorphic peak of the eclogite remnants has been dated at c. 420 Ma. The Variscan Internal Zone interpreted here as a collision zone, and also the Eovariscan suture, was intruded in Corsica by Mg–K granite from 345 to 335 Ma. The thrust of this Internal Zone onto the stack of parautochthonous nappes in central Sardinia is cross-cut by the Posada Asinara dextral shear zone. To the south, parautochthonous nappes overthrust the North-Gondwana margin which displays a possible Panafrican basement topped by an Iglesiente–Sulcis nonmetamorphic/anchimetamorphic Palaeozoic succession.  相似文献   

4.
U–Pb–Hf of detrital zircons from diverse Cambrian units in Morocco and Sardinia were investigated in order to clarify the sandstone provenance and how it evolved with time, to assess whether the detrital spectra mirror basement crustal composition and whether they are a reliable pointer on the ancestry of peri-Gondwanan terranes. Coupled with Hf isotopes, the detrital age spectra allow a unique perspective on crustal growth and recycling in North Africa, much of which is concealed below Phanerozoic sediments.In Morocco, the detrital signal of Lower Cambrian arkose records local crustal evolution dominated by Ediacaran (0.54–0.63 Ga) and Late-Paleoproterozoic (1.9–2.2 Ga; Eburnian) igneous activity. A preponderance of the Neoproterozoic detrital zircons possess positive εHf(t) values and their respective Hf model ages (TDM) concentrate at 1.15 Ga. In contrast, rather than by Ediacaran, the Neoproterozoic detrital signal from the Moroccan Middle Cambrian quartz-rich sandstone is dominated by Cryogenian-aged detrital zircons peaking at 0.65 Ga alongside a noteworthy early Tonian (0.95 Ga) peak; a few Stenian-age (1.0–1.1 Ga) detrital zircons are also distinguished. The majority of the Neoproterozoic zircons displays negative εHf(t), indicating the provenance migrated onto distal Pan-African terranes dominated by crustal reworking. Terranes such as the Tuareg Shield were a likely provenance. The detrital signal of quartz–arenites from the Lower and Middle Cambrian of SW Sardinia resembles the Moroccan Middle Cambrian, but 1.0–1.1 Ga as well as ~ 2.5 Ga detrital zircons are more common. Therefore, Cambrian Sardinia may have been fed from different sources possibly located farther to the east along the north Gondwana margin. 1.0–1.1 Ga detrital zircons abundant in Sardinia generally display negative εHf(t) values while 0.99–0.95 Ga detrital zircons (abundant in Morocco) possess positive εHf(t), attesting for two petrologically-different Grenvillian sources. A paucity of detrital zircons younger than 0.6 Ga is a remarkable feature of the detrital spectra of the Moroccan and Sardinian quartz-rich sandstones. It indicates that late Cadomian orogens fringing the northern margin of North Africa were low-lying by the time the Cambrian platform was deposited. About a quarter of the Neoproterozoic-aged detrital zircons in the quartz-rich sandstones of Morocco (and a double proportion in Sardinia) display positive εHf(t) values indicating considerable juvenile crust addition in North Africa, likely via island arc magmatism. A substantial fraction of the remaining Neoproterozoic zircons which possess negative εHf(t) values bears evidence for mixing of old crust with juvenile magmas, implying crustal growth in an Andean-type setting was also significant in this region.  相似文献   

5.
Well-preserved primary contact relationships between a Late Proterozoic metasedimentary and the metagranitic core and Palaeozoic cover series of the Menderes Massif have been recognized in the eastern part of the Çine submassif on a regional-scale. Metaconglomerates occur as laterally discontinuous channel-fill bodies close the base of the metaquartzarenite directly above the basement. The pebbles in the metaconglomerates consist mainly of different types of tourmaline-rich leucocratic granitoids, tourmalinite and schist in a sandy matrix. Petrographic features, geochemical compositions and zircon radiometric ages (549.6 ± 3.7–552.3 ± 3.1 Ma) of the diagnostic clasts of the metaconglomerates (e.g. leucocratic granitoids and tourmalinites) show excellent agreement with their in situ equivalents (549.0 ± 5.4 Ma) occurring in the Pan-African basement as stocks and veins.The correlation between clasts in the metaconglomerates and granitoids of the basement suggests that the primary contact between the basement and cover series is a regional unconformity (supra-Pan-African Unconformity) representing deep erosion of the Pan-African basement followed by the deposition of the cover series. Hence the usage of ‘core–cover’ terminology in the Menderes Massif is valid. Consequently, these new data preclude the views that the granitic precursors of the leucocratic orthogneisses are Tertiary intrusions.  相似文献   

6.
Cambrian and Ordovician-Middle Devonian sequences of two successive Early Palaeozoic basins of the Barrandian unconformably overlie Cadomian basement in the Bohemian Massif NW interior (Teplá-Barrandian unit) which is the easternmost peri-Gondwanan remnant within the Variscides. Correlation of stratigraphy and geochemistry of the Early Palaeozoic siliciclastic rocks elucidated sediment provenances. Sandstones of the Middle Cambrian Píbram-Jince Basin were derived from a Cadomian Neoproterozoic island arc. The source area of the Ordovician shallow-marine siliciclastics of the successor Prague Basin is a dissected Cadomian orogen. Late Cambrian acid volcanics of the Barrandian and Cambrian (meta)granitoids emplaced in the W part of the Teplá-Barrandian Cadomian basement are also discernible in these sediments. Old sedimentary component increased during the Ordovician. Early Llandovery siliciclastic rocks show characteristics of an abruptly weakened supply of terrigenous material and an elevated proportion of synsedimentary basic volcanics as a result of Silurian transgression. Emsian siliciclastics (intercalated in the Late Silurian to Early Devonian limestone suite) presumably comprise an addition of coeval basic/ultrabasic volcaniclastics. Middle Devonian flysch-like siliciclastics indicate reappearance of Cadomian source near the Barrandian during early Variscan convergences of Armorican microplates that preceeded accretion of the Teplá-Barrandian unit within the Bohemian Massif terrane mosaic.Dr. Patoka deceased in July 2004.  相似文献   

7.
The Serbo-Macedonian Massif (SMM) represents a composite crystalline belt within the Eastern European Alpine orogen, outcropping from the Pannonian basin in the north, to the Aegean Sea in the south. The central parts of the massif (i.e. southeastern Serbia, southwestern Bulgaria, eastern Macedonia) consist of the medium- to high-grade Lower Complex, and the low-grade Vlasina Unit. New results of U–Pb LA-ICP-MS analyses, coupled with geochemical analyses of Hf isotopes on magmatic and detrital zircons, and main and trace element concentrations in whole-rock samples suggest that the central SMM and the basement of the adjacent units (i.e. Eastern Veles series and Struma Unit) originated in the central parts of the northern margin of Gondwana. These data provided a basis for a revised tectonic model of the evolution of the SMM from the late Ediacaran to the Early Triassic.The earliest magmatism in the Lower Complex, Vlasina Unit and the basement of Struma Unit is related to the activity along the late Cadomian magmatic arc (562–522 Ma). Subsequent stage of early Palaeozoic igneous activity is associated with the reactivation of subduction below the Lower Complex and the Eastern Veles series during the Early Ordovician (490–478 Ma), emplacement of mafic dykes in the Lower Complex due to aborted rifting in the Middle Ordovician (472–456 Ma), and felsic within-plate magmatism in the early Silurian (439 ± 2 Ma). The third magmatic stage is represented by Carboniferous late to post-collisional granites (328–304 Ma). These granites intrude the gneisses of the Lower Complex, in which the youngest deformed igneous rocks are of early Silurian age, thus constraining the high-strain deformation and peak metamorphism to the Variscan orogeny. The Permian–Triassic (255–253 Ma) stage of late- to post-collisional and within-plate felsic magmatism is related to the opening of the Mesozoic Tethys.  相似文献   

8.
《Gondwana Research》2013,23(3-4):882-891
Early Carboniferous turbiditic sedimentary rocks in synorogenic basins located on both sides of the Rheic suture in SW Iberia were studied for provenance analysis. An enigmatic feature of this suture, which resulted from closure of the Rheic Ocean with the amalgamation of Pangea in the Late Carboniferous, is that there are no recognizable mid- to Late Devonian subduction-related magmatic rocks, which should have been generated during the process of subduction, on either side of it. U–Pb LA–ICP-MS geochronology of detrital zircons from Early Carboniferous turbidites in the vicinity of the Rheic suture in SW Iberia, where it separates the Ossa–Morena Zone (with Gondwana continental basement) to the north from the South Portuguese Zone (with unknown/Meguma? continental basement) to the south, reveals the abundance of mid- to Late Devonian (51–81%) and Early Carboniferous (13–25%) ages. The Cabrela and Mértola turbidites of the Ossa–Morena and South Portuguese zones, respectively, are largely devoid of older zircons, differing from the age spectra of detrital zircons in the oldest (Late Devonian) strata in the underlying South Portuguese Zone, which contain abundant Cambrian and Neoproterozoic ages. Mid- to Late Devonian zircons in the Cabrela Formation (age cluster at c. 391 Ma, Eifelian–Givetian transition) and Mértola Formation (age clusters at c. 369 Ma and at c. 387 Ma, Famennian and Givetian respectively) are attributable to a source terrane made up of magmatic rocks with a simple geological history lacking both multiple tectonic events and older continental basement. The terrane capable of sourcing sediments dispersed on both sides of the suture is interpreted to have been completely removed by erosion in SW Iberia. Given that closure of the Rheic Ocean required subduction of its oceanic lithosphere and the absence of significant arc magmatism on either side of the Rheic suture, we suggest: 1) the source of the zircons in the SW Iberia basins was a short-lived Rheic ocean magmatic arc, and 2) given the lack of older zircons in the SW Iberia basins, this short-lived arc was probably developed in an intra-oceanic environment.  相似文献   

9.
On the northeastern slope of the Kuznetsk Alatau, small differentiated alkaline basic intrusive massifs form an isometric area ~ 100 km across. They are composed of subalkalic and alkali gabbroids, basic and ultrabasic foidolites, nepheline and alkali syenites, and carbonatites. Results of complex (U–Pb, Sm–Nd, and Rb–Sr) isotope dating suggest that alkaline basic magmatism developed at two stages, in the Middle Cambrian–Early Ordovician (~ 510–480 Ma) and in the Early–Middle Devonian (~ 410–385 Ma). Finding of accessory zircons (age 1.3–2.0 Ga) in alkaline rocks suggests that the ascent of mantle plume was accompanied by the melting of fragments of Proterozoic mature continental crust composing the basement of the Caledonian orogen of the Kuznetsk Alatau. Probably, parental Cambrian–Ordovician alkaline mafic melts initiated metasomatism and lithosphere erosion. During the next melting of lithosphere substrate in ~ 100 Myr, this caused the generation of magmas of similar composition with inherited isotope parameters (εNd(T)  + 4.8 to + 5.7, TNd(DM)  0.8–0.9 Ga) pointing to the similar nature of their matter sources in the moderately depleted mantle.  相似文献   

10.
New U–Pb detrital zircon ages from (meta-)graywackes of the Blovice accretionary complex, Bohemian Massif, provide an intriguing record of expansion of the northern active margin of Gondwana during late Neoproterozoic and Cambrian. The late Neoproterozoic (meta-)graywackes typically contain a smaller proportion of Archean and Paleoproterozoic zircons and show a 1.6–1.0 Ga age gap and a prominent late Cryogenian to early Ediacaran age peak. The respective zircon age spectra match those described from other correlative Cadomian terranes with a West African provenance. On the other hand, some samples were dominated by Cambrian zircons with concordia ages as young as 499 Ma. The age spectra obtained from these samples mostly reflect input from juvenile volcanic arcs whereas the late Cambrian samples are interpreted as representing relics of forearc basins that overlay the accretionary wedge.The new U–Pb zircon ages suggest that the Cadomian orogeny, at least in the Bohemian Massif, was not restricted to the Neoproterozoic but should be rather viewed as a continuum of multiple accretion, deformation, magmatic and basin development events governed by oceanic subduction until late Cambrian times. Our new U–Pb ages also indicate that the Cadomian margin was largely non-accretionary since its initiation at ~ 650–635 Ma and that most of the material accreted during a short time span at around 527 Ma, closely followed by a major pulse of pluton emplacement. Based on the new detrital zircon ages, we argue for an unsteady, cyclic evolution of the Cadomian active margin which had much in common with modern Andean and Cordilleran continental-margin arc systems. The newly recognized episodic magmatic arc activity is interpreted as linked to increased erosion–deposition–accretion events, perhaps driven by feedbacks among the changing subducted slab angle, overriding plate deformation, surface erosion, and gravitational foundering of arc roots. These Cadomian active-margin processes were terminated by slab break-off and/or slab rollback and by a switch from convergent to divergent plate motions related to opening of the Rheic Ocean at around 490–480 Ma.The proposed tectonic evolution of the Teplá–Barrandian unit is rather similar to that of the Ossa Morena Zone in Iberia but shows significant differences to that of the North Armorican Massif and Saxothuringian unit in Western and Central Europe. This suggests that the Cadomian orogenic zoning was complexly disrupted during early Ordovician opening of the Rheic Ocean and Late Paleozoic Variscan orogeny so that the originally outboard tectonic elements are now in the Variscan orogen's interior and vice versa.  相似文献   

11.
《Gondwana Research》2013,23(3-4):855-865
The ages of detrital zircon grains from one paragneiss and inherited zircon cores from two augen gneisses from the amphibolite facies basement of the Peloritani Mountains (southern Italy) measured by SHRIMP U–Pb constrain the previously unknown deposition age of the original sediments and help to elaborate a model for their provenance and subsequent evolution. The deposition age is latest Neoproterozoic to Cambrian (~ 545 Ma), bracketed by the combined ages of the youngest detrital/inherited zircon populations and of zircon from virtually coeval granitoids that intrude the metasediments. This is consistent with the subgreenschist facies Palaeozoic volcano–sedimentary sequences exposed in the southern Peloritani Mountains being the original cover rocks of the northern Peloritani late Neoproterozoic to early Cambrian basement. The age spectra of the detrital/inherited zircon grains show that the Neoproterozoic/Cambrian sediments were derived from the erosion of sources dominated by Neoproterozoic rocks with ages in the range of 0.85–0.54 Ga, with other main components aged 1.1–0.9 and ~ 2.7–2.4 Ga, and a minor one aged ~ 1.6 Ga, as typically found in peri-Gondwanan terranes. The presence of a large amount of Grenvillian-aged zircon contradicts previous models that propose a West African affinity for the Calabria–Peloritani Terrane, and the absence of 2.2–1.9 Ga Trans Amazonian/Tapajós–Parima/Eburnean zircon rules out an Amazonian provenance. The age spectra are more consistent with the basement sediments having an East African origin, similar to that of the early Palaeozoic sandstones in southern Israel and Jordan, part of a “provenance regionality” shared with other terranes currently located in the eastern Mediterranean area.  相似文献   

12.
New LA-ICP-MS U–Pb detrital zircon ages from Ediacaran and Paleozoic siliciclastic rocks are used to constrain provenance and paleogeographic affinities of the Teplá-Barrandian unit (TBU) in the centre of the Bohemian Massif (Central Europe, Czech Republic). The samples taken span the period from ≤ 635 Ma to ~ 385 Ma and permit recognition of provenance changes that reflect changes in geotectonic regime. Detrital zircon age spectra of two Ediacaran, one Lower Cambrian and three Upper Ordovician samples resemble the ages known from the NW African proportion of Gondwana, particularly the Trans-Saharan belt, while three rocks from higher Lower Cambrian to Lowermost Ordovician strata contain detritus that may have been derived exclusively from local sources. The age spectrum of the Devonian rock is a combination of the NW Gondwanan and local features. These new findings in combination with a wide range of published data are in agreement with a Neoproterozoic subduction-related setting at the margin of Gondwana followed by a Cambrian/Early Ordovician rifting stage and an Ordovician passive margin setting. Furthermore the data are in favour of a position of the TBU at the Gondwanan margin throughout pre-Variscan times.  相似文献   

13.
We document two phases of folding within the central part of the Late Palaeozoic Anti‐Atlas chain of Morocco. A first generation of SW–NE folds involve a horizontal shortening of 10–20%, accommodated by polyharmonic buckle folding of contrasting wavelengths in Ordovician Jbel Bani quartzites and Devonian Jbel Rich carbonates. A second generation of folds with similar style and wavelengths in an E–W direction lead to complex interference patterns. Dome and basins are developed within the Jbel Rich and within Lower Cambrian dolomites. Both folding phases are related to thick‐skinned uplift of Precambrian basement in a Laramide style. In contrast to the typical Rocky Mountain foreland style, however, cover deformation in the Anti‐Atlas is mostly decoupled from the undying basement along thick incompetent horizons such as the Lower Cambrian Lie‐de‐Vin and Silurian shales.  相似文献   

14.
Metamorphic basement and its Neoproterozoic to Cambrian cover exposed in the Sierra de Pie de Palo, a basement block of the Sierras Pampeanas in Argentina, lie within the Cuyania terrane. Detrital zircon analysis of the cover sequence which includes, in ascending order, the El Quemado, La Paz, El Desecho, and Angacos Formations of the Caucete Group indicate a Laurentian origin for the Cuyania terrane. The lower section represented by the El Quemado and La Paz Formations is interpreted as having an igneous source related to a rift setting similar to that envisioned for the southern and eastern margins of Laurentia at approximately 550 Ma. The younger strata of the El Desecho Formation are correlative with the Cerro Totora Formation of the Precordillera, and both are products of rift sedimentation. Finally, the Angacos Formation and the correlative La Laja Formation of the Precordillera were deposited on the passive margin developed on the Cuyania terrane. The maximum depositional ages for the Caucete Group include ca. 550 Ma for the El Quemado Formation and ca. 531 Ma for the El Desecho Formation. Four different sediment sources areas were interpreted in the provenance analysis. The main source is crystalline basement dominated by early Mesoproterozoic igneous rocks related to the Granite-Rhyolite province of central and eastern Laurentia. Possible source areas for 1600 Ma metamorphic detrital zircons of the Caucete Group include the Yavapai-Mazatzal province (ca. 1800–1600 Ma) of south-central to southwestern Laurentia. Younger Mesoproterozoic zircon is likely derived from Grenville-age medium- to high-grade metamorphic rocks and subordinate igneous rocks that form the basement of Cuyania as well as the southern Grenville province of Laurentia itself. Finally, Neoproterozoic igneous zircon in the Caucete Group records different magmatic pulses along the southern Laurentian margin during opening of Iapetus and break-up of Rodinia. Northwestern Cuyania terrane includes a small basement component derived from the Granite-Rhyolite province of Laurentia, which was the source for detrital zircons found in the middle Cambrian passive margin sediments of Cuyania.  相似文献   

15.
This article focuses on how deformation and displacements are transferred between two décollements located at different stratigraphic levels by means of analogue modeling using brittle/viscous, sand/silicone systems. We present results from ten analogue models, in which we varied key parameters, such as the amount of horizontal offset or overlap between the pinch-outs of the upper and lower décollements, the total amount of shortening, and the planform geometry of the upper décollement. Results indicate that (i) structures root onto the basal and upper décollement, defining an inner and an outer domain and (ii) the offset/overlap of the décollements controls the geometry of the transition zone located between the two décollements, the propagation of deformation into the foreland both in space and time, and the deformation style and kinematics in the different domains of the model. When the pinch-out of the upper décollement is at an angle with the backstop, oblique structures form, and the geometry and propagation-mode of the structures change progressively along-strike. We compare our experimental results with other silicone/sand analogue models and with the natural examples of the Southern Pyrenees, where Upper Triassic and Eocene–Oligocene syn-tectonic evaporites acted as basal and upper décollements, respectively.  相似文献   

16.
The Jiangnan Orogen, the eastern part of which comprises the oceanic Huaiyu terrane to the northeast and the continental Jiuling terrane to the southwest, marks the collision zone of the Yangtze and the Cathaysia Blocks in South China. Here, zircon U–Pb geochronological and Lu–Hf isotopic results from typical basement and cover meta-sedimentary/sedimentary rock units in the eastern Jiangnan Orogen are presented. The basement sequences in southwestern Huaiyu terrane are mainly composed of marine volcaniclastic turbidite, ophiolite suite and tuffaceous phyllite, whereas those in the northeastern Huaiyu consist of littoral face pebbly feldspathic sandstones and greywacke interbedded with intermediate-basic volcanic rocks. Combined with previous studies, the present data show that the basement sequences exhibit arc affinities. Zircons from the basement phyllite in the southwestern margin of the Huaiyu terrane, representing a Neoproterozoic back-arc basin, yield a single age population of 800–900 Ma. The basement greywacke from northeastern Huaiyu terrane, representing fore-arc basin, is also characterized by zircons that preserve a single tectono-thermal event during 800–940 Ma. However, the late Neoproterozoic cover sequence preserves zircons from multiple sources with age populations of 750–890 Ma, 1670–2070 Ma and 2385–2550 Ma. Moreover, Hf isotopic data further reveal that most detrital zircons from the basement sequences yield positive εHf(t) values and late Mesoproterozoic model ages, while those of the cover sequence mostly show negative εHf(t) values. The Hf isotopic data therefore suggest that the basement sequences are soured from a Neoproterozoic arc produced by reworking of subducted late Mesoproterozoic materials. The geochronological and Hf isotopic data presented in this study suggest ca. 800 Ma for the assembly of the Huaiyu and Jiuling terranes, implying that the amalgamation of the Yangtze and Cathaysia Blocks in the eastern part occurred at ca. 800 Ma.  相似文献   

17.
《Gondwana Research》2014,25(1):309-337
The Trans-Altai Zone in southern Mongolia is characterized by thrusting of greenschist-facies Silurian oceanic rocks over Devonian and Lower Carboniferous volcano-sedimentary sequences, by E–W directed folding affecting the early Carboniferous volcanic rocks, and by the development of N–S trending magmatic fabrics in the Devonian–Carboniferous arc plutons. This structural pattern is interpreted as the result of early Carboniferous thick-skinned E–W directed nappe stacking of oceanic crust associated with syn-compressional emplacement of a magmatic arc. The southernmost South Gobi Zone represents a Proterozoic continental domain affected by shallow crustal greenschist-facies detachments of Ordovician and Devonian cover sequences from the Proterozoic substratum, whereas supracrustal Carboniferous volcanic rocks and Permian sediments were folded into N–S upright folds. This structural pattern implies E–W directed thin-skinned tectonics operating from the late Carboniferous to the Permian, as demonstrated by K–Ar ages ranging from ~ 320 Ma to 257 Ma for clay fractions separated from a variety of rock types. Moreover, the geographical distribution of granitoids combined with their geochemistry and SHRIMP U–Pb zircon ages form distinct groups of Carboniferous and Permian age that record typical processes of magma generation and increase in crustal thickness. The field observations combined with clay ages, the geochemical characteristics of the granitoids and their ages imply that the E–W trending zone affected by tectonism migrated southwards, leaving the Trans Altai Zone inactive during the late Carboniferous and Permian, suggesting that the two units were tectonically amalgamated along a major E–W trending strike slip fault zone. This event was related to late Carboniferous subduction that was responsible for the vast volume of granitoid magma emplaced at 300–305 Ma in the South Gobi and at 307–308 Ma in the Trans-Altai Zones. The formation and growth of the crust was initially due only to subduction and accretion processes. During the post-collisional period from 305 to 290 Ma the addition of heat to the crust led to the generation of (per-) alkaline melts. Once amalgamated, these two different crustal domains were affected by N–S compression during the Triassic and early Jurassic (185–173 Ma), resulting in E–W refolding of early thrusts and folds and major shortening of both tectonic zones.  相似文献   

18.
In this paper, laser ablation ICP-MS U–Pb detrital zircon ages are used to discuss provenance and early Palaeozoic palaeogeography of continental fragments that originated in the Cadomian–Avalonian active margin of Gondwana at the end of Precambrian, were subsequently extended during late Cambrian to Early Ordovician opening of the Rheic Ocean, and finally were incorporated into and reworked within the European Variscan belt. The U–Pb detrital zircon age spectra in the analysed samples, taken across a late Neproterozoic (Ediacaran) to Early/Middle Devonian metasedimentary succession of the southeastern Teplá–Barrandian unit, Bohemian Massif, are almost identical and exhibit a bimodal age distribution with significant peaks at about 2.1–1.9 Ga and 650–550 Ma. We interpret the source area as an active margin comprising a cratonic (Eburnean) hinterland rimmed by Cadomian volcanic arcs and we suggest that this source was available at all times during deposition. The new detrital zircon ages also corroborate the West African provenance of the Teplá–Barrandian and correlative Saxothuringian and Moldanubian units, questioned in some palaeogeographic reconstructions. Finally, at variance with the still popular concept of the Cadomian basement units as far-travelled terranes, we propose that early Palaeozoic basins, developed upon the Cadomian active margin, were always part of a wide Gondwana shelf and drifted northwards together before involvement in the Variscan collisional belt.  相似文献   

19.
Iran is a mosaic of Ediacaran–Cambrian (Cadomian; 520–600 Ma) blocks, stitched together by Paleozoic and Mesozoic ophiolites. In this paper we summarize the Paleozoic ophiolites of Iran for the international geoscientific audience including field, chemical and geochronological data from the literature and our own unpublished data. We focus on the five best known examples of Middle to Late Paleozoic ophiolites which are remnants of Paleotethys, aligned in two main zones in northern Iran: Aghdarband, Mashhad and Rasht in the north and Jandagh–Anarak and Takab ophiolites to the south. Paleozoic ophiolites were emplaced when N-directed subduction resulted in collision of Gondwana fragment “Cimmeria” with Eurasia in Permo-Triassic time. Paleozoic ophiolites show both SSZ- and MORB-type mineralogical and geochemical signatures, perhaps reflecting formation in a marginal basin. Paleozoic ophiolites of Iran suggest a progression from oceanic crust formation above a subduction zone in Devonian time to accretionary convergence in Permian time. The Iranian Paleozoic ophiolites along with those of the Caucausus and Turkey in the west and Afghanistan, Turkmenistan and Tibet to the east, define a series of diachronous subduction-related marginal basins active from at least Early Devonian to Late Permian time.  相似文献   

20.
The eastern branch of the Romanian Carpathians – the East Carpathians – is essentially an Alpine thrust and fold belt made up in its median part by a Crystalline–Mesozoic zone. This, in turn, is built up by several Alpine nappes (top to bottom): the Wildflysch, Bucovinian, Subbucovinian and Infrabucovinian. In the basement of the Bucovinian and Subbucovinian nappes the following Variscan tectonic units have been identified (top to bottom): Rar?u, Putna, Pietrosu Bistri?ei and Rodna. The Infrabucovinian nappes comprise the Rar?u nappe only. The Alpine nappes have an eastward vergence, opposite to the Variscan ones (present coordinates). In terms of pre-Variscan terranes distribution, the Rar?u nappe involved the Bretila terrane basement and its late Paleozoic cover, Putna the Tulghe? terrane basement, Pietrosu Bistri?ei the Negri?oara terrane basement and Rodna the Rebra terrane basement. These terranes originated along northwestern Gondwana margin during some Ordovician thermotectonic events. They do not represent Cadomian terranes and we call them Carpathian-type terranes. Two igneous protoliths from Bretila terrane basement (i.e. Anie? orthogneiss and H?ghima? granitoid) yield U/Pb LA-ICP-MS zircon ages of 462 ± 3 Ma and 469.2 ± 6.5 Ma, respectively. An orthogneiss from Tulghe? terrane basement yield 462.6 ± 3.1 Ma; the Pietrosu porphyritic orthogneiss from Negri?oara terrane basement yield 461.1 ± 5.2 Ma; and the Nichita? orthogneiss from Rebra terrane basement yield 447.9 ± 2.8 Ma. All these ages suggest the magma crystallization time. Two paragneisses from the Rebra terrane basement show a detrital zircon age distribution characteristic of a NE-African provenance. Regarding the tectonic settings, the lithology of the Bretila terrane suggests a magmatic arc on a continental margin, while of the Tulghe? terrane suggests a back arc environment, and those of the Rebra and Negri?oara terranes suggest a passive continental margin. An Ordovician metamorphism of medium grade (staurolite–kyanite zone) affected the basements of Bretila, Negri?oara and Rebra terranes, whereas a low grade (chlorite to biotite zone) event affects the Tulghe? terrane. With regard to the Variscan orogeny, the existence of a Paleotethys suture is proposed within the metamorphic basement of the East Carpathians. In this interpretation, the Bretila terrane was the upper plate, the Rebra and Negri?oara terrane pair formed the lower plate and the Tulghe? terrane was a component of the suture. The Variscan thermotectonic events reflect isothermal decompression with andalusite + cordierite in the basement of the Rebra terrane and retrogression in the basement of the other terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号