首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of ocean feedback on monsoon variations at 6 and 9.5 kyr Before Present (BP) compared to present-day is investigated by using sets of simulations computed with the IPSL–CM4 ocean–atmosphere coupled model and simulations with the atmospheric model only with the SST prescribed to the present-day simulation for the coupled model. This work is complementary to the study by Marzin and Braconnot (2009) who have analyzed in detail the response of Indian and African monsoons to changes in insolation at 6 and 9.5 kyr BP using the IPSL–CM4 coupled model. The monsoon rainfall was intensified at 6 and 9.5 kyr BP compared to 0 kyr BP as a result of the intensified seasonal cycle of insolation in the Northern Hemisphere. In this paper, the impact of the ocean feedback is analysed for the Indian, East-Asian and African monsoons. The response of the ocean to the 6 and 9.5 kyr BP insolation forcing shares similarities between the two periods, but we highlight local differences and a delay in the response of the surface ocean between 6 and 9.5 kyr BP. The ocean feedback is shown to be positive for the early stage of the African monsoon. A dipole of SST in the tropical Atlantic favouring the earlier build-up of the monsoon in the 6 and 9.5 kyr BP coupled simulations. However, it is strongly negative for the Indian and East Asian monsoons, and of stronger amplitude at 9.5 than at 6 kyr BP over India. In these Asian regions, the convection is more active over the ocean than over the continent during the late monsoon season due to the ocean feedback. The results are consistent with previous studies about 6 kyr BP climate. In addition, it is shown that the ocean feedback is not sufficient to explain the relative amplifications of the different monsoon systems within the three periods of the Holocene, but that the mechanisms such as the effect of the precession on the seasonal cycle of monsoons as discussed in Marzin and Braconnot (2009) are more plausible.  相似文献   

2.
《Quaternary Research》2014,81(3):500-507
We analyzed climate proxies from loessic-soil sections of the southern Chinese Loess Plateau. The early Holocene paleosol, S0, is 3.2 m thick and contains six sub-soil units. Co-eval soils from the central Loess Plateau are thinner (~ 1 m). Consequently higher-resolution stratigraphic analyses can be made on our new sections and provide more insight into Holocene temporal variation of the East Asian monsoon. Both summer and winter monsoon evolution signals are recorded in the same sections, enabling the study of phase relationships between the signals. Our analyses consist of (i) measurements of magnetic properties sensitive to the production of fine-grained magnetic minerals which reflect precipitation intensity and summer monsoon strength; and (ii) grain-size analyses which reflect winter monsoon strength. Our results indicate that the Holocene precipitation maximum occurred in the mid-Holocene, ~ 7.8–3.5 cal ka BP, with an arid interval at 6.3–5.3 cal ka BP. The winter monsoon intensity declined to a minimum during 5.0–3.4 cal ka BP. These results suggest that the East Asian summer and winter monsoons were out of phase during the Holocene, possibly due to their different sensitivities to ice and snow coverage at high latitudes and to sea-surface temperature at low latitudes.  相似文献   

3.
Pollen studies from core SO90-56KA recovered from the Arabian Sea off the Makran Coast (24° 509N, 65° 559E; 695 m depth) show that the end of the Holocene Humid Period, linked to the weakening of Indian monsoon fluxes, took place between 4700 and 4200 BP. Two periods of strong summer monsoon activity are identified between 5400–4200 BP and 2000–1000 BP during which the montane pollen taxa coming from the Himalayas reached the Makran coast due to increased fluvial activity of the Indus River. A contrasting period, dominated by the winter monsoon between 4200 and 2000 BP, is identified based on the presence of pollen taxa from the Baluchistan plateaus. The regional vegetation of the low- and midaltitudes, arid and semiarid, are remarkably stable from 4500 BP to the present.  相似文献   

4.
A peat cellulose δ18O record spanning around 14,000 years from the Hani peat mire in northeastern China reveals several abrupt temperature anomalies in the period from the last deglaciation through the Holocene. The timing of these anomalies coincides well with the notable cooling events recorded respectively using the GISP2 ice core and ice-rafted sediment of the North Atlantic Ocean, such as the Older Dryas, Inter-Allerød, Younger Dryas, and the nine ice-rafted debris events. The results demonstrate that this repeating pattern of abrupt temperature deterioration is not limited to the North Atlantic area at high latitude but also exists in the western North Pacific region at middle latitude. The synchronous temperature anomalies possibly are resulted from the joint effects of meltwater discharge into the North Atlantic Ocean and reduced solar activity. In the period from around 8600 to 8200 cal. yrs BP the Hani peat record shows a broad δ18O peak that may reflect compound climate signals resulting from the two kinds of forcing factors: the temperature drop related to reduced solar activity at around 8600–8250 cal. yrs BP, and the temperature anomaly attributed to the meltwater effect at around 8220 ± 70 cal. yrs BP. This result may provide palaeo-temperature evidence for existence of the sharp “8.2 k” event in the western North Pacific region. In addition, our results have revealed that in the period from the last deglaciation through the Holocene the synchronous temperature anomalies before and after the “8.2 k” event seem to be related to meltwater outflow and reduced solar activity, respectively. It is important that the all temperature anomalies—whether because of reduced solar activity in the late Holocene or from meltwater discharge in the early Holocene—are accompanied by an abrupt decline in the Indian Ocean summer monsoon and abrupt strengthening of the East Asian summer monsoon. It is likely that reduced solar activity and meltwater outflow appear to modulate Earth system changes in the same direction. The influences could be compounded. Reduced solar activity and meltwater outburst both appear to act as triggers for occurrence of the El Niño phenomenon in the equatorial Pacific Ocean, which may result in broad teleconnections between the temperature anomaly in the Northern Hemisphere and abrupt variation of the Asian monsoon.  相似文献   

5.
The Niayes of Senegal are sahelian interdunal fens, that hosted an azonal subguinean vegetation during the Holocene thanks to the availability of fresh groundwater despite contrasted climatic conditions. Exploratory scenario-based modeling of the zonal hydrogeology has been conducted for different periods with the Cast3M code. The results show that the delay in the onset of humid vegetation ca. 10 ky cal. BP could be ecosystemic and denote a start of the African Humid Period (AHP) ca. 11.5 ky cal. BP. Alternatively, the AHP could have started earlier while its beneficial effects would have been canceled by low sea levels. Vegetation degradation around 7.5 ky cal. BP is shown to have resulted from a climate minoration, that possibly alleviated until 4 ky cal. BP. The rising watertable allowed the degraded forest to persist during that period however. The forest expansion that followed ca. 3.5 ky cal. BP had then clearly a climatic origin. The interpretation of pollens for climate research requires a careful filtering-out of local groundwater availability.  相似文献   

6.
《Quaternary Science Reviews》2007,26(1-2):170-188
High-resolution oxygen isotope (δ18O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N. δ18O values reflect the amount of precipitation which is primarily controlled by the mean latitudinal position of the ITCZ and dynamics of the Indian summer monsoon (ISM). During the early Holocene rapidly decreasing δ18O values indicate a rapid northward displacement in the mean latitudinal position of the summer ITCZ and the associated ISM rainfall belt, with decadal- to centennial-scale changes in monsoon precipitation correlating well with high-latitude temperature variations recorded in Greenland ice cores. During the middle to late Holocene the summer ITCZ continuously migrated southward and monsoon precipitation decreased gradually in response to decreasing solar insolation, a trend, which is also recorded in other monsoon records from the Indian and East Asian monsoon domains. Importantly, there is no evidence for an abrupt middle Holocene weakening in monsoon precipitation. Although abrupt monsoon events are apparent in all monsoon records, they are short-lived and clearly superimposed on the long-term trend of decreasing monsoon precipitation. For the late Holocene there is an anti-correlation between ISM precipitation in Oman and inter-monsoon (spring/autumn) precipitation on Socotra, revealing a possible long-term change in the duration of the summer monsoon season since at least 4.5 ka BP. Together with the progressive shortening of the ISM season, gradual southward retreat of the mean summer ITCZ and weakening of the ISM, the total amount of precipitation decreased in those areas located at the northern fringe of the Indian and Asian monsoon domains, but increased in areas closer to the equator.  相似文献   

7.
《Quaternary Science Reviews》2007,26(15-16):1999-2011
A multi proxy sediment core record on the continental margin off western Svalbard, European Arctic, reflects large climatic and oceanographic oscillations at the Lateglacial–early Holocene transition. Based on studies of planktonic foraminifera, their stable oxygen and carbon isotopic composition and ice rafted debris, we have reconstructed the last 14 cal. ka BP. The period 14–13.5 cal. ka BP was characterized by highly unstable climatic conditions. Short-lived episodes of warming alternated with meltwater pulses and enhanced iceberg rafting. This period correlates to a regional warming of the northern North Atlantic. An overall decrease in meltwater took place during the deglaciation (14–10.8 cal. ka BP). The late Younger Dryas and subsequent transition into the early Holocene is characterized by a reduced flux of planktonic foraminifera and increased iceberg rafting. A major warming took place from 10.8 to 9.7 cal. ka BP, the influence of meltwater ceased and the flux of warm Atlantic Water increased. From 9.7 to 8.8 cal. ka BP, the western Svalbard margin surface waters were significantly warmer than today. This warm period, the thermal maximum, was followed by an abrupt cooling at 8.8. cal. ka BP, caused by an increased influence of Arctic Water from the Arctic Ocean. The results document that the European Arctic was very sensitive to climatic and oceanographic changes at the end of the last glacial and during the Holocene.  相似文献   

8.
Around 8500 cal years BP, at the time of the maximum of the African Humid Period, lakes and wetlands expanded in the present-day Sahara while large paleodrainages were formed or re-actived, in response to an orbitally-induced increase in monsoon rainfall. It has been suggested that the direct consequence of this increase in rainfall was the northward displacement of the Sahara/Sahel boundary, thought to have reached 23°N in central and eastern Africa. Here, we show a more complex situation characterized by an increase in biodiversity as the desert accommodated more humid-adapted species from tropical forests and wooded grasslands: tropical plant species now found some 400 to 500 km to the south probably entered the desert as gallery-forest formations along rivers and lakes where they benefited from permanent fresh water. At the same time, Saharan trees and shrubs persisted, giving rise to a vegetation that has no analogue today. In this article, we present distribution maps of selected plant species to show both the amplitude of the vegetation change compared to the present and the composition of the past plant communities. We also estimate the migration rate of tropical plant taxa to their northernmost position in the Sahara. This study is based on the use of several data sets: a data set of the modern plant distribution in northern Africa and a data set of modern and fossil pollen sites (from the African Pollen Database, http://fpd.mediasfrance.org/ and http://medias.obs-mip.fr/apd/).  相似文献   

9.
《Quaternary Science Reviews》2007,26(3-4):287-299
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events.  相似文献   

10.
《Quaternary Science Reviews》2005,24(12-13):1375-1389
High-resolution analyses of the elemental composition of calcite and biogenic silica (BSi) content in piston cores from Lake Edward, equatorial Africa, document complex interactions between climate variability and lacustrine geochemistry over the past 5400 years. Correlation of these records from Lake Edward to other climatically-forced geochemical and lake level records from Lakes Naivasha, Tanganyika, and Turkana allows us to develop a chronology of drought events in equatorial East Africa during the late Holocene. Major drought events of at least century-scale duration are recorded in lacustrine records at about 850, 1500, ∼2000, and 4100 cal year BP. Of these, the most severe event occurred between about 2050 and 1850 cal year BP, during which time Lake Edward stood about 15 m below its present level. Numerous additional droughts of less intensity and/or duration are present in the Lake Edward record, some of which may be correlated to other lacustrine climate records from equatorial East Africa. These events are superimposed on a long-term trend of increasingly arid conditions from 5400 to about 2000 cal year BP, followed by a shift toward wetter climates that may have resulted from an intensification of the winter Indian monsoon. Although the causes of decade- to century-scale climate variability in the East African tropics remain obscure, time-series spectral analysis suggests no direct linkage between solar output and regional rainfall. Rather, significant periods of ∼725, ∼125, 63–72, 31–25, and 19–16 years suggest a tight linkage between the Indian Ocean and African rainfall, and could result from coupled ocean-atmosphere variability inherent to the tropical monsoon system.  相似文献   

11.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

12.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   

13.
《Quaternary Science Reviews》2007,26(11-12):1610-1620
The primary objective of the present study is to identify major phases of alluviation in the Indian region since the abrupt Deglacial intensification of the monsoon (∼15 cal ka BP) on the basis of analysis of 68 radiocarbon dates from two major hydro-geomorphic regions of India: the Central Ganga Basin (CGB) and the Deccan Peninsula (DP). The recognition of main phases of alluviation and incision has been achieved by evaluating the temporal distribution and clustering of the radiocarbon dates from alluvial sequences. The clusters were detected on the basis of the interpretation of the summed probability distribution plots derived by using OxCal version 4.0.1 and CALPAL (version May 2006) software packages.The summed probability plots reveal that periods of alluviation in the CGB, represented by three clusters (13.9–12.3, 11.9–11.2 and 9.8–9.0 cal ka BP) occur roughly before the onset of Early Holocene monsoon optimum phase. Two other clusters occur in the intervals 3.6–2.8 and 1.1–0.9 cal ka BP. The peak monsoon period generally lacks clusters of radiocarbon dates implying fluvial erosion and channel incision. This period also shows clustering of radiocarbon dates of the abandoned channels. In comparison, 14C dates from DP alluvial units form clusters at 16.4–14, 12.8–11.2, 10.8–8.9, 8.1–6.7 and 5.1–3.9 cal ka BP, indicating an association with the Deglacial–Early Holocene humid phase. Alluviation in the DP appears to have continued, more or less, uninterrupted till the middle of the Holocene epoch. The beginning and end of the discernible gap in the radiocarbon dates of CGB (9.0–3.6 cal ka) broadly corresponds with the two well-established short-term events of the Holocene, 8.2 and 4.2 ka cal BP. In comparison, the prominent gap of DP radiocarbon dates (3.9–2.1 ka cal BP) approximately begins with the 4.2 ka cal BP short-term event (onset of aridity) and ends with the 2.0 ka cal BP enhanced monsoon event.Notwithstanding the inter-regional differences in the fluvio–sedimentary response in the India region, the clusters of radiocarbon dates indicate that the century to millennium scale variations in fluvial activity in the Indian subcontinent were intimately linked to long-term fluctuations in the monsoon strength during the Late Quaternary.  相似文献   

14.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

15.
Holocene variations of Bjørnbreen, Smørstabbtinden massif, west-central Jotunheimen are reconstructed from the lithostratigraphy of two alpine stream-bank mires flooded episodically by meltwater. The approach uses multiple sedimentological indicators (weight loss-on-ignition, mean grain size, grain-size fractions, bulk density, moisture content and magnetic susceptibility), an a priori model of overbank deposition of suspended glaciofluvial sediments, a detailed chronology based on 56 radiocarbon dates, and a Little Ice Age sedimentological analogue. Rapid, late-Preboreal deglaciation was indicated by immigration of Betula pubescens by 9700 cal. BP. An interval of at least 3000 years in the early Holocene when glaciers were absent was interrupted by two abrupt episodes of glacier expansion around the time of the Finse Event, the first at ca 8270–7900 cal. BP (Bjørnbreen I Event) and the second at ca 7770–7540 cal. BP (Bjørnbreen II Event). Neoglaciation began shortly before ca 5730 cal. BP with gradual build-up to the maximum of the Bjørnbreen III Event at ca 4420 cal. BP. Later maxima occurred at ca 2750 cal. BP (Bjørnbreen IV Event) and at 1300, 1260, 1060 and 790 cal. BP (all within the Bjørnbreen V Event). Glaciers were smaller than today and possibly melted away on several occasions in the late Holocene (ca 3950, 1410 and 750 cal. BP). Minor maxima also occurred at ca 660 and 540 cal. BP, within the late Mediaeval Warm Period and the early Little Ice Age, respectively. The Little Ice Age maximum was dated to 213±25 BP (ca 205 cal. BP). The relative magnitudes of the main glacier maxima were determined: Erdalen Event>Little Ice Age Event (Bjørnbreen VI)>Bjørnbreen I (Finse Event) ≈ Bjørnbreen II>Bjørnbreen V⩾Bjørnbreen IV>Bjørnbreen III. These episodic events of varying magnitude and abruptness were used in conjunction with an independent summer-temperature proxy to reconstruct variations in equilibrium-line altitude (ELA) and a Holocene record of winter precipitation. Since the Preboreal, ELA varied within a range of about 390 m, and winter precipitation ranged between 40 and 160% of modern values. Winter precipitation variations appear to have been the main cause of these century- to millennial-scale Holocene glacier variations.  相似文献   

16.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

17.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   

18.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

19.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

20.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号