首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
The 2003 August 21 Fiordland earthquake ( M L7.0, M W7.2) was the largest earthquake to occur in New Zealand for 35 yr and the fifth of M6+ associated with shallow subduction in Fiordland in the last 15 yr. The aftershocks are diffuse and do not distinguish between the two possible main shock fault planes implied by the Harvard CMT solution, one corresponding to subduction interface thrusting and the other corresponding to steeply seaward dipping thrusting. The distinction is important for calculating the induced stress changes on the overlying Alpine Fault which has a history of very large earthquakes, the last possibly in 1717. We have relocated the aftershocks, using data from temporary seismographs in the epicentral region and the double difference technique. We then use the correlation between aftershock hypocentres and regions of positive changes in Coulomb Failure Stress (CFS) due to various candidate main shock fault planes to argue for concentrated slip on the shallow landward dipping subduction interface. Average changes in CFS on the offshore segments of the Alpine Fault are then negative, retarding any future large events. In our models the change in CFS is evaluated on faults of optimal orientation in the regional stress field as determined by inversion of P -wave polarities.  相似文献   

8.
9.
10.
11.
12.
A magnetotelluric study of the Alpine Fault, New Zealand   总被引:1,自引:0,他引:1  
Magnetotelluric soundings have been made at seven locations on a 4  km profile crossing the Alpine Fault in the South Island of New Zealand. The 'distortion' techniques of Groom & Bailey (1989 ) and Lilley (1998a , b ) have been used to derive regional apparent resistivity and phase curves that correspond to electromagnetic induction in orientations parallel and perpendicular to the fault. 2-D inversion of the regional responses reveals that a narrow (<1  km wide) conductive zone is associated with the Alpine Fault. This conductor is most probably related to the heating of deep circulating meteoric water in a region in which enhanced temperatures occur at shallow depth due to the tectonic uplift of the Southern Alps.  相似文献   

13.
14.
15.
Geography seems to be in good hands in New Zealand's schools and universities, but we cannot afford to be complacent. What are the key priorities for further strengthening geography in New Zealand in the years ahead? The New Zealand Geographical Society has to play a crucial role by helping to bring together geographers in the different sectors, as well as in promoting New Zealand geography internationally, and raising its profile in the media. Most of all, we need to demonstrate the vibrancy, significance and relevance of geography to the wider community.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号