首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uplifting frontal ridges are one of the most conspicuous geomorphic features that mark the frontal parts of actively converging mountain belts. Growth of these ridges can lead to the simultaneous development of a drainage system that is defined by watersheds, stream network and long profiles of channels. In the present study, shape parameters of watersheds, stream network characteristics and pattern of network growth, shape of long profiles, and the SL index have been investigated in a part of NW Himalaya to understand the relationship between endogenic tectonic processes and exogenic fluvial processes. This explains the tectonic control on drainage systems in the uplifting frontal ridge. This watershed analysis was carried out using a Digital Elevation Model (DEM) and a number of anomalies have been identified and analysed. The most striking is the asymmetric development of watersheds on either side of an almost straight ridge crest. Watershed asymmetry along the ridge crest is characterized by larger area and less elongated watersheds in the southern flank (forelimb) in comparison to the northern flank (backlimb). Drainage network and long profile analysis establishes that the larger watershed area in the forelimb is due to dominance of headward erosion and its impact on drainage network growth. Dominance of headward erosion is due to slope variation in response to forelimb development along a fault-related fold. Even through, headward erosion has shifted the ridge crest; it is parallel with the trace of the Himalayan Frontal Thrust (HFT). The parallel ridge crest with reference to the HFT is indicative of the tectonic control of the HFT on the development of the watersheds. Hence, a well developed linkage between tectonic processes (fold development) and surface processes (headward erosion) is responsible for variation in watershed and drainage network pattern across the ridge crest. The study also investigates the role of planform ridge curvature on watershed development. The effect is more pronounced on an asymmetric ridge, such as the Mohand ridge, than on a symmetric ridge.  相似文献   

2.
Relative size of fluvial and glaciated valleys in central Idaho   总被引:2,自引:1,他引:1  
Quantitative comparisons of the morphometry of glaciated and fluvial valleys in central Idaho were used to investigate the differences in valley relief and width in otherwise similar geologic and geomorphic settings. The local relief, width, and cross-sectional area of valleys were measured using GIS software to extract information from USGS digital elevation models. Hillslope gradients were also measured using GIS software. Power-law relationships for local valley relief, width, and cross-sectional area as a function of drainage area were developed. Local valley relief in glaciated valleys relates to drainage area with a power-law exponent similar to fluvial valleys, but glaciated valleys are deeper for a given drainage area. Local valley width in glaciated valleys is greater than in fluvial valleys, but the exponent of the power-law relationship to drainage area is similar in both valley types. Local valley cross-sectional area in glaciated valleys increases with drainage area with a power-law exponent similar to fluvial valleys, however, glacial valleys have roughly 80% greater cross-sectional area. Steep valley walls in glaciated basins increase the potential for bedrock landsliding relative to fluvial basins. Both the Olympic Mountains of Washington and valleys in central Idaho show relationships in which glaciated valleys are up to 30% deeper than fluvial valleys despite differences in lithology, tectonic setting, and climate.  相似文献   

3.
Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.  相似文献   

4.
Piggyback basins developed at the mountain fronts of collisional orogens can act as important, and transient, sediment stores along major river systems. It is not clear, however, how the storage and release of sediment in piggyback basins affects the sediment flux and evolution of downstream river reaches. Here, we investigate the timing and volumes of sediment storage and release in the Dehra Dun, a piggyback basin developed along the Himalayan mountain front in northwestern India. Based on OSL dating, we show evidence for three major phases of aggradation in the dun, bracketed at ca. 41–33 ka, 34–21 ka and 23–10 ka, each accompanied by progradation of sediment fans into the dun. Each of these phases was followed by backfilling and (apparently) rapid fan‐head incision, leading to abandonment of the depositional unit and a basinward shift of the active depocentre. Excavation of dun sediment after the second and third phases of aggradation produced time‐averaged sediment discharges that were ca. 1–2% of the modern suspended‐sediment discharges of the Ganga and Yamuna rivers that traverse the margins of the dun; this sediment was derived from catchment areas that together comprise 1.5% of the drainage area of these rivers. Comparison of the timing of dun storage and release with upstream and downstream records of incision and aggradation in the Ganga show that sediment storage in the dun generally coincides with periods of widespread hinterland aggradation but that late stages of dun aggradation, and especially times of dun sediment excavation, coincide with major periods of sediment export to the Ganga Basin. The dun thus acts to amplify temporal variations in hinterland sediment supply or transport capacity. This conceptual model appears to explain morphological features of other major river systems along the Himalayan front, including the Gandak and Kosi Rivers, and may be important for understanding sediment flux variations in other collisional mountain belts.  相似文献   

5.
宛川河为黄河的一级支流,位于青藏高原东北部的兰州盆地东部.该区域历史时期曾发生多次6级以上地震.以DEM数据为基础,通过河流水系分析和地貌形态指数的计算,讨论了区域新构造活动特征.山前曲折度指数(SMF)在宛川河北为1.03~1.18,在兴隆山北前缘为1.83~2.88;河谷宽高比指数(VF)在宛川河北部为0.36~2.34,在南部的兴隆山为0.55~13.SMF与VF值的大小和分布特征表明研究区新构造活动活跃,且宛川河以北(前人推测有断层存在)新构造活动的活跃程度更高.流域盆地非对称性指数(AF)在宛川河北部东南端的异常揭示存在掀斜断块和褶皱运动;结合裂点分布和沟谷错断等地貌特征,发现宛川河北正断裂的东南端也存在西北--东南向走滑活动.  相似文献   

6.
研究雅鲁藏布江大拐弯入口地区流水地貌对构造运动的响应过程和响应方式。在ArcGIS平台利用新近的SRTM-DEM数据对区内的流水地貌进行分析。结果显示,该区水系为平行状格局,上游和下游河谷分别出现宽谷和峡谷(嶂谷),鲁霞村与龙白村之间的10条支流长度从西南向北东方向逐渐变短,其纵剖面逐渐变陡,鲁霞村与丹娘村两地的支流在平面上出现转折点。根据前人对该区构造演化的研究,该区主要经历了60 Ma以来两大陆碰撞2、3 Ma以来持续挤压和7 Ma以来以南迦巴瓦峰为中心的正断垮塌的构造演化过程,各阶段在地质上分别产生了褶皱、走滑和正断垮塌等构造变形,并控制了水系的发育,形成了上述流水地貌。  相似文献   

7.
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike–slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50‐km‐wide orogen located along the North America–Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain‐size analysis and Ar40/Ar39 dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution‐triggered or deformation‐triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.  相似文献   

8.
晚新生代以来,青藏高原北东向扩展,致使祁连山地区遭受了强烈的构造隆升,造就了祁连山地区复杂的构造格局和急剧变化的构造地貌,其典型水系流域地貌特征揭示了该地区的新构造活动和地貌演化过程。庄浪河流域位于祁连山东段,作为青藏高原北东向扩展的前缘地区,庄浪河流域的地貌参数对构造活动非常敏感,提取庄浪河流域的地貌信息,有助于揭示祁连山东段庄浪河流域地貌对构造活动的响应,及系统探讨该区地貌发育特征及其所蕴含的构造意义。庄浪河流域内及边缘发育有庄浪河断裂、天祝盆地南缘断裂、疙瘩沟隐伏断裂以及金强河-毛毛山-老虎山断裂。晚新生代以来,这些断裂仍在活动,并且控制着流域内的构造变形、山体隆升和河流水系地貌发育。本研究采用ALOS DEM 12.5 m数据,基于ArcGIS空间分析技术,通过高程条带剖面、河流坡降指标体系(K,SL,SL/K)和Hack剖面、面积-高程积分值(HI)和积分曲线(HC)等方法,对庄浪河流域地貌特征进行了初步分析。结果表明,庄浪河地区地形起伏由北西向南东递减,构造活动存在东西分异的规律;庄浪河流域内部K值、SL、SL/K、HI值西侧高于东侧,Hack剖面西侧相比东侧上凸更明显;H...  相似文献   

9.
Exploration data for different-order river crossings on the Lena-Katanga Plateau (northern Irkutsk oblast) were used to identify, according to the occurrence conditions of bedrocks, weathering crusts and alluvial deposits, three types of structure of river valley bottoms. In the geological evolution history of loose deposits in the valleys, six stages were determined, which occurred mostly during the Holocene. Karst lakes evolved into existence along tectonic fault lines in the river valleys at that time period which complicated their structure.  相似文献   

10.
吐鲁番盆地的新构造运动及其表现   总被引:1,自引:1,他引:1  
本文主要论述了具有叠加性质的吐鲁番中,新生代断隐盆 地中,新构造运动的形迹与地貌显示。指出晚第三纪以来周边山地与盆地底部巨大的断块差异升降运动,乃是深隐盆地形成的关键;盆地中新构造运动形迹十分明显,地貌表现普遍而突出。  相似文献   

11.
《Geomorphology》2005,64(1-2):97-116
This paper provides an analysis of relationships between drainage patterns and fractures in the part of Sierra Nevada, California, north of the Yosemite Valley. Bedrock is Cretaceous granite and cut by numerous lineaments of various orientation, length and geomorphic expression. We have mapped fractures and drainage lines from aerial photographs, 1:40 000 scale, in four test areas ranging in size from 32.5 to 266 km2. Azimuths are shown on rose diagrams for fractures and drainage lines and then visually and statistically compared. The coincidence of drainage and fracture patterns is strong, which implies causal relationships. In plan, the majority of valleys follow fractures even if this locally means a different orientation in respect to the regional slope arising from tectonic tilt of the range. Main streams occupy deeply incised troughs coincident with ‘master fractures’ of regional extent. Among two principal fracture directions, SSW–NNE to SW–NE and WSW–ENE, the former exerts more control on the drainage lines. The presence of a central zone of structural weakness within the major valleys provided significant constraints for the course of glacial erosion and may explain why multiple Pleistocene glaciers did not succeed in transforming valley cross-sections into expected U-shapes.  相似文献   

12.
沟域经济的地域类型识别研究——以北京市门头沟区为例   总被引:2,自引:0,他引:2  
以村庄为基本单元,结合实地调研和村庄级统计材料,收集门头沟区18条典型沟域的沟域经济发展数据。在对其沟域经济类型区进行研究的基础上,对地域类型进行了划分,并探讨了不同地域类型下的沟域经济空间结构。根据熵权一层次模型,结合实地调研数据、专家意见及村庄级资料,研究得出沟域平均海拔、区位条件等是沟域经济地域类型划分的主导要素...  相似文献   

13.
The northeastern 110 km2, or nearly 40%, of Antigua is underlain by impure limestones of the Oligocene-aged Antigua Formation, on which has developed a subdued karst landscape consisting essentially of shallow enclosed depressions (dolines), intermittently active stream valleys and widely scattered residual hills. The dispersed dolines are broad, shallow and clustered, especially in the central and southeastern sections of the limestone belt, where they attain densities of 7/km2. The widely spaced residual hills attain heights of up to 40 m and localized densities of over 4/km2. Five main valley systems up to 6 km in length traverse the limestone in a broadly northeast direction, carrying both autogenic drainage from within the karst area and allogenic drainage from the non-carbonate Central Plain. Karst and cave development has been constrained by the low purity of the limestones. Of the four types of carbonate islands identified within the Carbonate Island Karst Model, Antigua most closely resembles the Composite Island type. The karst has been much influenced by human activities, particularly agriculture and quarrying, and is now a focus of the burgeoning tourism industry. Virtually none of the karst is designated as protected areas, but several sites warrant protection, and several conservation strategies have been suggested.  相似文献   

14.
The landscape of today's central Iberian Peninsula has been shaped by ongoing tectonic activity since the Tertiary. This landscape comprises a mountain ridge trending E–W to NW–SE, the Central System, separating two regions of smooth topography: the basins of the rivers Duero and Tajo. In this study, we explore interrelationships between topography and tectonics in the central Iberian Peninsula. Regional landscape features were analysed using a digital elevation model (DEM). Slope gradients and slope orientations derived from the DEM were combined to describe topographic surface roughness. Topography trend-surfaces inferred from harmonic analysis were used to define regional topographic features. Low roughness emphasizes the smooth nature of the basins' topography, where surfaces of homogeneous slope gradient and orientation dominate. High roughness was associated with abrupt changes in gradient and slope orientation such as those affecting crests, valley bottoms and scarp edges present in the mountain chain and in some deep incised valleys in the basins. One of the applications of roughness mapping was its capacity to isolate incised valley segments. The area distribution of incised rivers shows their prevalence in the east. On a regional scale, the topographic surface can be described as a train of NE–SW undulations or waves of 20 km wavelength. These undulations undergo changes in direction and interruptions limited by N–S-trending breaks. E–W and NE–SW troughs and ridges clearly mark structural uplifts and depressions within the Central System. These structures are transverse to the compressive NW–SE stress field that controlled the deformation of the central Iberian Peninsula from the Neogene to the present. They represent the upper crustal folding that accommodates Alpine shortening. N–S breaks coincide with Late Miocene faults that control the basins' sedimentation. Further, associated palaeoseismic structures suggest the recent tectonic activity of N–S faults in the eastern part of the Tajo Basin. Apatite fission track analysis data for this area suggest the occurrence of a significant uplift episode from 7 to 10 Ma which induced the river incisions appearing in the roughness map. N–S and NE–SW faults could be seismogenic sources for the current moderate to low seismic activity of the east Tajo Basin and southeast Central System. Although N–S fault activity has already been established, we propose its significant contribution to shaping the landscape.  相似文献   

15.
高前兆 《中国沙漠》1984,4(4):41-49
本文分析了新疆天山北坡玛纳斯河流域治理沙漠、防治沙漠化的开发过程。总结了该地区根根流域生态系统特点,充分发挥流域内水土资源潜力,以水资源限度及其利用水平作好流域规划。并从建设完整的水资源系统、联合运用地表和地下水、掌握灌溉技术三方面充分发挥水资源的生态效益出发,同时注重建设沙漠地区绿洲防护体系,改良土壤提高土地生产力和调整农林牧结构的经验。因而,石河子垦区已建立成为一个典型的人工灌溉绿洲生态系统。  相似文献   

16.
Predicting sediment flux from fold and thrust belts   总被引:8,自引:1,他引:8  
The rate of sediment influx to a basin exerts a first-order control on stratal architecture. Despite its importance, however, little is known about how sediment flux varies as a function of morphotectonic processes in the source terrain, such as fold and thrust growth, variations in bedrock lithology, drainage pattern changes and temporary sediment storage in intermontane basins. In this study, these factors are explored with a mathematical model of topographic evolution which couples fluvial erosion with fold and thrust kinematics. The model is calibrated by comparing predicted topographic relief with relief measured from a DEM of the Central Zagros Mountains fold belt. The sediment-flux curve produced by the Zagros fold belt simulation shows a delay between the onset of uplift and the ensuing sediment flux response. This delay is a combination of the natural response time of the geomorphic system and a time lag associated with filling, and then subsequently uplifting and re-eroding, the proximal part of the basin. Because deformation typically propagates toward the foreland, the latter time lag may be common to many ancient foreland basins. Model results further suggest that the response time of the bedrock fluvial system is a function of rock resistance, of the width of the region subject to uplift and erosion, and, assuming a nonlinear dependence of fluvial erosion upon channel gradient, of uplift rate. The geomorphic response time for the calibrated Zagros model is on the order of a few million years, which is commensurate with, or somewhat larger than, typical recurrence intervals for episodes of thrusting. However, model experiments also highlight the potential for significant variations in both geomorphic response time and in sediment flux as a function of varying rock resistance. Given a reasonable erodibility contrast between resistant and erodible lithologies, model sediment flux curves show significant sediment flux variations that are related solely to changes in rock resistance as the outcrop pattern changes. An additional control on sediment flux to a basin is drainage diversion in response to folding or thrusting, which can produce major shifts in the location and magnitude of sediment source points. Finally, these models illustrate the potential for a significant mismatch between tectonic events and sediment influx to a basin in cases where sediment is temporarily ponded in an intermontane basin and later remobilized.  相似文献   

17.
河流阶地和活动断层是研究区域构造运动的良好证据。分析了敦煌雅丹地貌区的活动断层和河流阶地的特征与性质,并取样测定活动断层形成时间,进而通过区域对比确定研究区晚更新世以来的构造运动特征和性质。研究区晚更新世以来受区域构造运动影响强烈,特别是阿尔金构造系和北山构造系的次级构造对研究区影响明显。距今约10万年以来,研究区共发生过3次明显的间歇性构造抬升活动:Ⅰ期发生于距今约10万年前,强度最弱;Ⅱ期发生于距今约7万年前,最为强烈;Ⅲ期发生在距今4万年前。  相似文献   

18.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   

19.
ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland‐basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800–22 600 km2), fan‐shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low‐relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid‐channel and bank‐attached sand bars. Overbank areas are characterized by crevasse‐splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long‐term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening‐upward, > 2‐km‐thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold‐thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid‐Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse‐splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold‐thrust belt. In addition, the present‐day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid‐Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold‐thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2– a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold‐thrust belt.  相似文献   

20.
罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系   总被引:28,自引:15,他引:13  
阿奇克谷地位于罗布泊洼地之东, 93°E以西, 东西长约150km, 南北宽20~30km。为新生代北山与阿尔金山之间的地堑凹地的一部分, 与东面河西走廊的地堑凹地相通。根据出露的雅丹地层河湖相沉积样品所作的ESR测年(2272~10094kaBP)和本区的地质地貌特征可将阿奇克谷地演化与库姆塔格沙漠的发育史归纳为4个时期。①早更新世至中更新世罗布泊古湖扩大时期, 东部湖湾宽约50~60km, 向东延伸至93°15′E或更东; ②中更新世晚期山地上升与古湖湾退缩消失时期, 距今30万年前左右, 青藏高原强烈隆升, 阻挡了海洋水汽的进入, 亚洲内陆加速变干, 由于阿尔金山的左旋向东滑动, 在北面古湖区地层发生了与阿尔山斜交的羽毛状断裂谷群, 并因东北向的断裂上升与东西向的河西地堑谷地斜交, 阻断了疏勒河水不再向西流入罗布泊, 使东部湖湾向西退缩并逐步消失; ③中更新世晚期至晚更新世初, 暴雨径流与强烈的风蚀作用时期, 阿奇克谷地北部的洪积湖相沉积台地支沟口形成雅丹土丘群, 谷地南面库姆塔格沙漠北面羽毛状断裂谷群形成雅丹垄脊和风蚀谷, 谷地中央呈现出季节性的盐碱沼泽和零星雅丹土丘; ④晚更新世末至全新世库姆塔格沙漠扩大, 向北埋没了羽毛状断裂谷(风蚀谷)和雅丹垄脊, 形成了世界上独特的羽毛状沙丘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号