首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common-ray approximation eliminates problems with ray tracing through S-wave singularities and also considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common-ray approximation applied. The anisotropic-common-ray approximation of the coupling ray theory is more accurate than the isotropic-common-ray approximation. We derive the equations for estimating the travel-time errors due to the anisotropic-common-ray (and also isotropic-common-ray) approximation of the coupling ray theory. The errors of the common-ray approximations are calculated along the anisotropic common rays in smooth velocity models without interfaces. The derivation is based on the general equations for the second-order perturbations of travel time.  相似文献   

2.
The partial derivatives of travel time with respect to model parameters are referred to as perturbations. Explicit equations for the second-order and higher-order perturbations of travel time in both isotropic and anisotropic media are derived. The perturbations of travel time and its spatial derivatives can be calculated by simple numerical quadratures along rays.  相似文献   

3.
Explicit equations for the spatial derivatives and perturbation derivatives of amplitude in both isotropic and anisotropic media are derived. The spatial and perturbation derivatives of the logarithm of amplitude can be calculated by numerical quadratures along the rays. The spatial derivatives of amplitude may be useful in calculating the higher-order terms in the ray series, in calculating the higher-order amplitude coefficients of Gaussian beams, in estimating the accuracy of zero-order approximations of both the ray method and Gaussian beams, in estimating the accuracy of the paraxial approximation of individual Gaussian beams, or in estimating the accuracy of the asymptotic summation of paraxial Gaussian beams. The perturbation derivatives of amplitude may be useful in perturbation expansions from elastic to viscoelastic media and in estimating the accuracy of the common-ray approximations of the amplitude in the coupling ray theory.  相似文献   

4.
The coupling ray theory bridges the gap between the isotropic and anisotropic ray theories, and is considerably more accurate than the anisotropic ray theory. The coupling ray theory is often approximated by various quasi-isotropic approximations.Commonly used quasi-isotropic approximations of the coupling ray theory are discussed. The exact analytical solution for the plane S wave, propagating along the axis of spirality in the 1-D anisotropic oblique twisted crystal model, is then numerically compared with the coupling ray theory and its three quasi-isotropic approximations. The three quasi-isotropic approximations of the coupling ray theory are (a) the quasi-isotropic projection of the Green tensor, (b) the quasi-isotropic approximation of the Christoffel matrix, (c) the quasi-isotropic perturbation of travel times. The comparison is carried out numerically in the frequency domain, comparing the exact analytical solution with the results of the 3-D ray tracing and coupling ray theory software. In the oblique twisted crystal model, the three studied quasi-isotropic approximations considerably increase the error of the coupling ray theory. Since these three quasi-isotropic approximations do not noticeably simplify the numerical implementation of the coupling ray theory, they should deffinitely be avoided. The common ray approximations of the coupling ray theory do not affect the plane wave, propagating along the axis of spirality in the 1-D oblique twisted crystal model, and should be studied in more complex models.  相似文献   

5.
Anisotropic common S-wave rays are traced using the averaged Hamiltonian of both S-wave polarizations. They represent very practical reference rays for calculating S waves by means of the coupling ray theory. They eliminate problems with anisotropic-ray-theory ray tracing through some S-wave slowness-surface singularities and also considerably simplify the numerical algorithm of the coupling ray theory for S waves. The equations required for anisotropic-common-ray tracing for S waves in a smooth elastic anisotropic medium, and for corresponding dynamic ray tracing in Cartesian or ray-centred coordinates, are presented. The equations, for the most part generally known, are summarized in a form which represents a complete algorithm suitable for coding and numerical applications.  相似文献   

6.
邵媛媛  郑需要 《地震学报》2014,36(3):390-402
提出了利用人工爆破P波走时反演地壳介质方位各向异性参数的方法. 在假定介质是弱各向异性介质的情况下, 使用扰动理论得到了线性化的反演公式, 其中待反演的弱各向异性参数是P波走时的线性函数. 如果在反演公式中参考走时取相同震中距接收点的P波平均走时, 那么所获得的弱各向异性参数与参考介质速度的选取无关. 反演得到的弱各向异性参数可以看作是不同震中距和不同深度范围内介质的等效弱各向异性参数. 等效弱各向异性参数在一定程度上反映了不同深度范围内水平方向相速度随方位的变化. 这种变化可能是不同时期构造应力作用的结果. 2007年中国地震局在首都圈怀来地区实施了一次大吨位人工爆破实验, 以爆破点为中心, 布设了高密度的地震观测台网和台阵. 台站相对于爆破点具有360°的全方位覆盖, 所得到的地震记录数据为研究怀来、 延庆地区地壳介质P波方位各向异性提供了必要条件. 我们通过走时反演获得了与水平方位相关的弱各向异性参数, 并对弱各向异性参数进行坐标变换, 得到了能够直观描述岩石弱各向异性的具有水平对称轴的横向各向同性介质, 给出了对应的3个独立弱各向异性参数及其对称轴方位, 讨论了介质各向异性与构造应力场的关系. 结果表明该地区地壳介质存在明显的方位各向异性, 其最大值约为4.6%.  相似文献   

7.
Introduction The degree of earth-resistivity anisotropy was described (MAO, et al, 1995, 1998) as follows: S=|1\nn∑I=1(ρSN\ρEW)I|-1|×103 n=6(1) whereρNS and ρEW are monthly mean values of earth resistivity in the direction of NS and EW, respectively, S is the half-year value. Equation (1) shows that if ρNS=ρEW, then S =0 and the electrical property of medium is isotropic; if ρNS≠ρEW, then S≠0 and the electrical property of medium is anisotropic. When S increases, the anisotropy of electrical property of medium is enhanced. Because the rightside of equation (1) is absolute value and the possibility ofρNS>ρEW and ρNS<ρEW can be different at different stations, the increase or decrease of S cannot reflect the relative changes between ρNS and ρEW. FENG, et al (2000) defined S as follows:  相似文献   

8.
The anisotropy of a periodically layered isotropic medium is numerically modeled in order to study the effect of the scale of heterogeneity on seismic observations. An important motivation is to delineate the wavelength ranges over which a pulse propagating obliquely through the structure will be described by either ray (short wavelength) or effective medium (long wavelength) theory. The same band-limited pulse is propagated obliquely at a variety of incidence angles through a compositionally uniform layered structure as a function of the layer thicknesses. The resulting seismograms display similar behavior to that encountered for normal incidence including the effects of stop- and pass-bands. Velocities determined from time picks on these seismograms show a large difference in velocities between the long and short wavelength limits as has been previously demonstrated for normal incidence propagation. The bulk of the transition between these two limits is independent of incidence angle and occurs when the ratio between the wavelength and the layering thickness is near a value of 10. Two more geologically reasonable models show that these effects are diminished with smaller contrasts between the layers.  相似文献   

9.
射线法模拟分析井间地震观测的波场特征   总被引:1,自引:1,他引:1       下载免费PDF全文
按照井间地震的观测系统,用改进的突变点加插值射线追踪方法,追踪每炮每道的射线路径,计算几种主要类型的波沿射线路径的波至时间和射线振幅,制作井间地震多炮多道水平分量和垂直分量的合成记录.并将合成记录选排为井间共炮点道集、共接收点道集、共偏移距道集和共中心深度点道集,系统地分析了不同道集内几种主要类型的地震波的传播特征.对野外观测的实际井间地震记录进行了模拟,从复杂的井间地震记录中,识别出井间地震实际观测到的不同类型的波场,为随后的井间地震资料处理和应用提供了依据.  相似文献   

10.
华东地区台站偏差的研究   总被引:2,自引:0,他引:2  
用华东地区十年地震资料和迭代方法,在华东走时表的基础上,计算出百余地震台站的作为距离的函数的走时偏差值,将这些结果当做台站校正值用于地震定位,定位精度得到明显提高。  相似文献   

11.
The disruption of a transportation network can have a high social and economic impact on the welfare of a society, as it can significantly affect the daily routines of a community. Although many studies have focused on the estimation of physical risk in the components that compose these networks, only a limited number have analyzed their interconnections and impact in the traffic flow. The present study analyzes how earthquake damage can disrupt the road network in an urban environment, and how this will influence the ability of the population to travel. Traffic due to daily commutes is modeled for different layouts of the network, corresponding to possible disruptions caused by earthquake damage. The duration and length of each trip were calculated both for the undamaged network conditions and for the disrupted network. The increase in the median duration and length of each trip allows estimating the economic loss for each event due to drivers' delay. By combining the probability of a specific road being blocked with its number of users, the average number of affected vehicles was estimated, and the most critical segments identified. The methodology was applied to a case study concerning the road network of the area around the Italian city of Messina in Sicily. The results were calculated for both a repetition of the well-known historical event of 1908 and a set of simulated earthquakes consistent with the national probabilistic seismic hazard model of Italy.  相似文献   

12.
Theory of the coupling of stress-pore pressure in the saturated, elastic porous media is used in the study of the formation mechanism of the Xinfengjiang reservoir-induced earthquakes. Based on the results, it is believed that compared with the mechanism of additional stress in the vicinity of the reservoir, the mechanism of the coupling of additional stress and pore pressure may be more well-founded for the occurrence of reservoir-induced earthquakes.  相似文献   

13.
自适应时间步长法在土体冻结水热耦合模型中的应用   总被引:1,自引:0,他引:1  
由于相变的存在,土体冻结过程中的温度传导与水分迁移是一个复杂的物理过程。为了更好地描述冻结过程中水分与温度的变化规律,通过对不饱和土体水分传导方程的研究,考虑冻结过程中的相变,建立了一维冻土水热耦合模型。给出了相应的差分与有限元程序,并对室内冻结实验进行了模拟。提出误差因子的概念,通过对程序计算中时间步长与计算用时、误差关系的分析,论证了进行时间步长优化的必要性。在两种不同数值方法的对比中,体现了有限元计算的稳定性。提出了调整后的自适应时间步长计算方法。计算结果表明,优化时间步的自适应步长法,在不影响模型计算准确度的前提下,可以大幅减少计算用时,提高计算效率。  相似文献   

14.
Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic waves attenuation caused by the internal structure of rock mass,and in particular,the internal geometry of the distribution of fluid-filled openings Systematic research on the effect of crack parameters,such as crack density,crack aspect ratio(the ratio of crack thickness to crack diameter),pore fluid properties(particularly pore fluid velocity),VP/VS ratio of the matrix material and seismic wave frequency on attenuation anisotropy has been conducted based on Hudson’s crack theory.The result shows that the crack density,aspect ratio,material filler,seismic wave frequency,and P-wave and shear wave velocity in the background of rock mass,and especially frequency has great effect on attenuation curves.Numerical research can help us know the effect of crack parameters and is a good supplement for laboratory modeling.However,attenuation is less well understood because of the great sensitivity of attenuation to details of the internal geometry.Some small changes in the characteristics of pore fluid viscosity,pore fluids containing gas and liquid phases and pore fluids containing clay can each alter attenuation coefficients by orders of magnitude.Some parameters controlling attenuation are therefore necessary to make reasonable estimations,and anisotropic attenuation is worth studying further.  相似文献   

15.
The contravariant components of the wave-propagation metric tensor equal half the second-order partial derivatives of the selected eigenvalue of the Christoffel matrix with respect to the slowness-vector components. The relations of the wave-propagation metric tensor to the curvature matrix and Gaussian curvature of the slowness surface and to the curvature matrix and Gaussian curvature of the ray-velocity surface are demonstrated with the help of ray-centred coordinates.  相似文献   

16.
一个城市或地区的承灾能力主要看其基础设施的承灾能力,其中最重要的一个部分就是生命线系统的承灾能力。在分析评价生命线系统承灾能力时,不仅要考察复杂性、均衡性和可靠性这些网络特征,还要考虑各子系统间的关联性。这种关联对生命线系统整体的承灾能力有削弱作用。根据复杂系统脆性理论的思想和脆性联系熵的方法,提出了用系统综合脆性联系熵来反映和评价生命线系统整体的关联特性,并通过判断各子系统间的相互影响关系,量化了生命线系统整体的易损性。经耦联关系分析和计算,灾害破坏下,从生命线系统相互作用来看,电力系统受其他子系统的影响最大;而由于供水系统的关键性和其影响方式的不确定性,灾后首先要恢复的是供水系统的工作或供给。证明了该方法为优化系统组织管理、控制灾后的修复工作和协调子系统间的关系提供了依据。  相似文献   

17.
We have modeled the effect of a direct current (DC) electric field on the propagation of seismic waves by the pseudospectral time domain (PSTD) method, based on a set of governing equations for the poroelastic media. This study belongs to the more general term of the seismoelectric coupling effect. The set of physical equations consists of the poroelastodynamic equations for the seismic waves and the Maxwell's equations for the electromagnetic waves; the magnitude of the seismoelectric coupling effect is characterized by the charge density, the electric conductivity, the Onsager coefficient, a function of the dielectric permittivity, the fluid viscosity, and the zeta potential. The poroelastodynamic vibration of a solid matrix generates an electric oscillation with the form of streaming current via the fluctuation of pore pressure. Meanwhile, fluctuating pore pressure also causes oscillatory variation of the electric resistivity of the solid matrix. The simulated poroelastic wave propagation and electric field variation with an existing background DC electric field are compared with the results of a physical experiment carried out in an oilfield. The results show that the DC electric field can significantly affect the propagating elastic energy through the seismoelectric coupling in a wide range of the seismic frequency band.  相似文献   

18.
我们知道,地震活动性主要是研究地震活动在时间、空间和强度等方面的规律。一些学者对地震活动时、空、强方面的统计规律还作了不少研究。本文利用MAPSIS系统工具中GL值计算方法对云南地区(21°N~29°N,97°E~107°E)1972年以来21次MS≥6地震前三年GL值进行时间变化扫描,结果发现该地区MS≥6地震前两年,在震中200 km范围内,3.0级以上地震活动均显示出明显的非均匀状态(GL>1);同时,MS≥6中强震前GL值空间扫描图象显示,GL值的高值区(GL>1)与未来MS≥6地震震中密切相关。因此GL值在云南地区MS≥6地震预报(特别是中期预报)中具有一定的实际意义。  相似文献   

19.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   

20.
利用新疆呼图壁气枪数据,在引入小波传播子方法测量到时延迟的基础上,进一步引入面波振幅作为监测地下介质变化的一个重要参数。结果表明:相对于到时的突跳,面波振幅能克服气枪源震源强度突变带来的测量不稳定;同时,通过面波到时延迟和振幅变化特征的模拟,发现面波振幅和到时延迟测量存在较好的正相关关系,且可以用介质速度变化所导致的聚焦和散焦效应来解释。面波振幅也可以作为较为稳定的参数来衡量地下介质的波速变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号