共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation of the paleohydrology of glacial Lake Oshkosh, eastern Wisconsin, USA 总被引:1,自引:0,他引:1
James A. Clark Kevin M. Befus Peter W. Stewart Chris T. Gregory 《Quaternary Research》2008,69(1):117-129
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900 cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400 m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100 m and then subside approximately 30 m. At its maximum extent, Lake Oshkosh covered 6600 km2 with a volume of 111 km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9 m/s and peak discharge of 140,000 m3/s are predicted, which could drain 33.5 km3 of lake water in 10 days and transport boulders up to 3 m in diameter. 相似文献
2.
New dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States. 相似文献
3.
Along the margins of continental ice sheets, lakes formed in isostatically depressed basins during glacial retreat. Their shorelines and extent are sensitive to the ice margin and the glacial history of the region. Proglacial lakes, in turn, also impact the glacial isostatic adjustment due to loading, and ice dynamics by posing a marine-like boundary condition at the ice margin. In this study we present a tool that efficiently identifies lake basins and the corresponding maximum water level for a given ice sheet and topography reconstruction. This algorithm, called the LakeCC model, iteratively checks the whole map for a set of increasing water levels and fills isolated basins until they overflow into the ocean. We apply it to the present-day Great Lakes and the results show good agreement (∼1−4%) with measured lake volume and depth. We then apply it to two topography reconstructions of North America between the Last Glacial Maximum and the present. The model successfully reconstructs glacial lakes such as Lake Agassiz, Lake McConnell and the predecessors of the Great Lakes. LakeCC can be used to judge the quality of ice sheet reconstructions. © 2019 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. 相似文献
4.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic. 相似文献
5.
Using soil and contaminant properties to assess the potential for groundwater contamination to the lower Great Lakes,USA 总被引:1,自引:0,他引:1
Contaminant risk factors in surface soil were evaluated within the urbanized Rouge River watershed in southeastern Michigan,
USA, which includes metropolitan Detroit. An analytical risk factor model and Geographic Information Systems overlays were
used to quantify and characterize the potential impacts of five categories of contaminants including DNAPLs (dense nonaqueous
phase liquids), LNAPLs (light nonaqueous phase liquids), PAHs (polynuclear aromatic hydrocarbons), PCBs (polychlorinated biphenyls),
and lead. The results indicate that DNAPL compounds released into sand, moraine, and sandy and silty clay soil types have
the greatest potential to affect groundwater, and impact the Great Lakes ecosystem and the public health. 相似文献
6.
We investigate seasonal variations in the diet and drinking water of four Great Lakes mastodon (Mammut americanum) specimens using stable isotope analysis of serially sampled inner-enamel bioapatite structural carbonate (δ13Csc, δ18Osc), and previously published bulk analyses. Isotopic analyses and thin section measurements showed that mastodon tooth enamel extension rates (~ 12–4 mm/yr, decreasing toward the cervix) were lower than those of mammoths or modern elephants. Mastodons had distinct and highly regular seasonal variations in δ13Csc and δ18Osc, which we interpret in the context of local glacial history and vegetation changes. Seasonal variations in δ18O were large but variations in δ13C were small, and may have been obscured if coarser sampling methods than our inner-enamel sampling approach were used. Thus, our approach may be particularly useful for understanding relatively small seasonal changes in δ13C within C3 environments. The seasonal patterns, though not entirely conclusive, suggest that the Ontario mastodons did not migrate over very long distances. Rather, the climate and seasonal dietary patterns of mastodons within the region changed over time, from ~ 12,400 to 10,400 14C yr BP (~ 15,000 – 12,000 cal yr BP). Insights gained using these methods can contribute to a better understanding of megafaunal extinctions and Paleoamerican lifeways. 相似文献
7.
Timothy G Fisher 《Quaternary Research》2003,59(2):271-276
Sediment cores with new radiocarbon dates from the southern outlet of glacial Lake Agassiz indicate that meltwater delivery to the Mississippi valley was disrupted at 10,800 14C yr B.P. and the outlet was abandoned by 9400 14C yr B.P. These findings confirm the timing of generally accepted terminations of the Lockhart and Emerson Phases of Lake Agassiz. Additionally, the radiocarbon chronology indicates that the spillway was fully formed by 10,800 14C yr B.P. and that the occupancy in late-Emerson time was likely short-lived with minimal spillway erosion. 相似文献
8.
Directly dated Cucurbita from archaeological sites near Lake Huron expand the range and human usage of adventive, cultivated wild gourds or squash into the Great Lakes region, USA, by 4000 14C yr BP. The data also show that domesticated C. pepo squash was cultivated there by 3000 14C yr BP. Although milder Hypsithermal climate may have been a contributing factor, squash and gourds expanded northward during the mid-Holocene mainly by human agency and may be the first human-introduced adventive plant in temperate North America. Even after 3000 14C yr BP, when domesticated squash generally replaced wild varieties at northern sites, squash stands were probably informally managed rather than intensively cultivated. 相似文献
9.
Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern “rich conifer swamp” community, despite generally low regional abundance of these species in pollen records. Ages range from 7095 ± 50 to 6420 ± 70 14C yr BP, but the clustering of stump dates and the development of 2 floating tree-ring chronologies suggest a briefer forest interval of no more than c. 400 years. Dendrochronological analysis indicates an environment with high inter-annual climate variability. Stable-carbon isotope composition falls within the range of modern trees from this region, but the stable-oxygen composition is consistent with warmer conditions than today. Both our tree-ring and isotope data provide support for a warmer environment in this region, consistent with a mid-Holocene thermal maximum. This drowned forest also provides a dated elevation in the Nipissing transgression at about 6420 14C yr BP (7350 cal yr BP) in the southern Lake Huron basin, a few hundred years before reopening of the St. Clair River drainage. 相似文献
10.
Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada 总被引:2,自引:0,他引:2
Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region. 相似文献
11.
Field investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin. 相似文献
12.
This paper reports on recent multiproxy research conducted to determine the chronology of lake-level fluctuations recorded in sediments from a natural exposure at a classic Bonneville basin site. Grain size, carbonate percentage, magnetic susceptibility, amount of charcoal, and diatom community composition data were collected from the 16 lacustrine units that compose the 122 cm stratigraphic column in Stansbury Gulch. Trends observed in the measured proxies reveal several significant changes in lake level, and thereby effective moisture, over the approximately 14,500 yr time span represented by the sediments. Results (1) verify the effectiveness of the multiproxy approach in Bonneville basin studies, which has been underutilized in this region, (2) reaffirm the double nature of Lake Bonneville's Stansbury oscillation, (3) suggest a previously undocumented post-Gilbert highstand of Great Salt Lake, and (4) identify possible teleconnections between climate events in the Bonneville basin and events in the North Atlantic at about 20,500 and 7500 14C yr BP. 相似文献
13.
A paleolimnological study of lake-level changes in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area in northwestern Ontario, indicates large fluctuations have occurred over the Holocene. Analyses are based on diatoms, the proportion of chrysophyte scales to diatoms and organic matter content from near-shore sediment cores. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several transects in Lake 239. Declines of ∼ 1-3 m occurred during the late Holocene, whereas declines of at least 8 m occurred during the more arid mid-Holocene. These results provide the first substantive evidence of large declines in lake level in northwestern Ontario during the mid-Holocene. Conditions during the mid-Holocene may provide a partial view of future conditions under increasing global temperatures. 相似文献
14.
Recent studies of lake-level fluctuations during the last deglaciation in eastern France (Jura Mountains and Pre-Alps) and on the Swiss Plateau show distinct phases of higher water level developing at the beginning and during the latter part of Greenland Stade 1 (i.e., Younger Dryas event) and punctuating the early Holocene period at 11,250-11,050, 10,300-10,000, 9550-9150, 8300-8050, and 7550-7250 cal yr B.P. The phases at 11,250-11,050 and 8300-8050 cal yr B.P. appear to be related to the cool Preboreal Oscillation and the 8200 yr event assumed to be associated with deglaciation events. A comparison of this mid-European lake-level record with the outbursts from proglacial Lake Agassiz in North America suggests that, between 13,000 and 8000 cal yr B.P., phases of positive water balance were the response in west-central Europe to climate cooling episodes, which were induced by perturbation of the thermohaline circulation due to sudden freshwater releases to oceans. This probably was in response to a southward migration of the Atlantic Westerly Jet and its associated cyclonic track. Moreover, it is hypothesized that, during the early Holocene, varying solar activity could have been a crucial factor by amplifying or reducing the possible effects of Lake Agassiz outbursts on the climate. 相似文献
15.
Fossil pollen, plant macrofossils, gastropods, and elemental and stable-isotope geochemistry in a sediment core from Twiss Marl Pond, southern Ontario, Canada, were used to document climate oscillations during the Last Glacial–Interglacial transition (13,000–8500 14C BP) and understand their ecological effects. Chronology was provided by AMS 14C dating and regional pollen correlation. Oxygen isotope (δ18O) results from mollusc shells, Chara-encrustations and bulk carbonates show a classic climate sequence of a warm Bølling–Allerød (BOA) at 12,500–10,920 14C BP, a cold Younger Dryas (YD) at 10,920–10,000 14C BP, the Holocene warming at 10,000 14C BP, a brief Preboreal Oscillation (PB) at 9650 14C BP, and a possible Gerzensee/Killarney (G/K) cooling shortly before 11,000 14C BP.Clay sediments at the base of the core contain high herb and shrub pollen and abundant arctic/alpine plant macrofossils, indicating a treeless tundra with severe soil erosion in watershed. During the BOA warm period, authigenic marl began to be deposited, and Picea woodland became established. The establishment of Picea woodland after peaks of δ18O and of carbonate accumulation suggests a lagged response of upland vegetation to BOA warming. In contrast, the occurrence of warmth-loving aquatics Najas flexilis and Typha latifolia at that time indicates sensitive responses of aquatic plants. The YD cooling is indicated by a 1.5‰ negative excursion in δ18O, an increase in minerogenic matter and higher concentrations of erosion-derived elements (Al, Na, K, Ti and V). Pollen data show no forest transformation in response to YD cooling, which is attributed to the insensitive nonecotonal vegetation at that time. However, more openings in the forests and increased erosion in the watershed are indicated by a slight increase of herb pollen, high concentrations of erosion elements and a Pediastrum peak. The onset of the Holocene was marked by an abrupt increase of 2‰ in δ18O and the replacement of Picea woodland by Pinus-dominated forest. The Picea recurrence at 9650 14C BP demonstrates sensitive response of ecotonal vegetation to the PB climate oscillation, which is also indicated by 0.4‰ negative excursion of δ18O. These new results suggest the importance of multiproxy records for reliable paleoclimate reconstruction.Reevaluation and revised chronologies of previously published sites (Gage Street, and Nichols Brook) in the eastern Great Lakes region show their major δ18O shifts correlative to the YD and PB oscillations as documented from Twiss Marl Pond and nearby Crawford Lake. The sequence and magnitude of climatic oscillations from these sites match in detail with records from the Atlantic Seaboard, suggesting that these oscillations are an expression of broad-scale, probably global, climate change rather than local meltwater-induced climate cooling. 相似文献
16.
17.
我国东北地区地处东亚季风北缘,在高、低纬过程的共同影响下,区域气候和环境变化较为复杂。文章选取大兴安岭中段的阿尔山天池长2.5m的全新世以来的湖泊沉积岩芯(ACL17C)作为研究对象,对源于植物叶蜡的正构烷烃及相关代用指标进行分析,结果表明阿尔山天池自10.0cal. ka B.P.以来,正构烷烃浓度所代表的湖泊及流域的生产力逐渐增强,并在5.0~3.0cal. ka B.P.期间达到峰值,结合其他指标推测该阶段湖泊水位较高,有机物输入稳定,沉积速率较慢,气候温暖湿润,可能是全新世气候适宜期;2.3~1.5cal. ka B.P.期间,正构烷烃浓度下降,沉积物颗粒变粗,指示湖泊水位突降,藻类含量上升,植被状况较差,可能发生了区域性的气候变干事件;1.5cal. ka B.P.之后,相关指标显示植被状况转好,湖泊水位上升。通过对比大、小兴安岭及附近区域的植被及气候演化结果,表明该区域全新世气候适宜期可能发生在中、晚全新世,与其他地区记录的早、中全新世适宜期存在显著差异。
相似文献18.
A 7.6-m core recovered from Lough Inchiquin, western Ireland provides evidence for rapid and long-term climate change from the Late Glacial period to the Mid-Holocene. We determined percentage of carbonate, total organic matter, mineralogy, and δ18Ocalcite values to provide the first high-resolution record of climate variability for this period in Ireland. Following deglaciation, rapid climate amelioration preceded large increases in GISP2 δ18Oice values by ∼2300 yr. The Oldest Dryas (15,100 to 14,500 cal yr B.P.) Late Glacial event is documented in this record as a decrease in δ18Ocalcite values. Brief warming at ∼12,700 cal yr B.P. was followed by characteristic Younger Dryas cold and dry climate conditions. A rapid increase in δ18Ocalcite values at ∼10,500 cal yr B.P. marked the onset of Boreal warming in western Ireland. The 8200 cal yr B.P. event is represented by a brief cooling in our record. Prior to general warming, a larger and previously undescribed climate anomaly between 7300 and 6700 cal yr B.P. is characterized by low δ18Ocalcite values with high-frequency variability. 相似文献
19.
北美五大湖区的安大略湖北岸Don Valley Brickyard、Scarborough Bluffs、Bowmanville Bluffs剖面共同构成了北美东北部最长也是最厚的陆地第四纪沉积记录, 较完整地记录了晚更新世劳伦泰德冰盖(the Laurentide Ice Sheet)的演化. 晚更新世劳伦泰德冰盖演化的重建有赖于这些经典剖面中重要沉积地层单元的准确年代学控制. 传统的地层年代学主要是依靠少量14C年代, 将主要的混杂堆积单元(diamicton)解释为气候变冷环境下的冰川扩张, 并与指示全球冰量变化的深海氧同位素曲线一一比对建立起来的. 这样建立起来的年代学存在很大的不确定性. 20世纪80-90年代的少量热释光年代也不相吻合, 最近的13个长石红外释光定年则只集中于Bowmanville Bluffs的一个分层, 并未建立整个剖面的地层年代学, 使这些经典沉积剖面的年代学一直没有得到系统的建立. 应用石英光释光SAR-SGC法测试了Bowmanville Bluffs剖面Glaciofluvial Sand单元的2个冰水沉积样品, 年代结果分别为(41.6±3.8) ka、(48.1±4.4) ka, 分析表明这一年代结果偏老, 石英颗粒可能晒褪不完全. 由于大测片无法识别晒褪不完全的颗粒, 因此, 测试更多的剖面序列的光释光年代并尝试采用粗颗粒小测片或单颗粒技术解决样品颗粒晒褪不完全的问题将是必要的. 相似文献
20.
Sophie Verheyden Fadi H. Nader Hai J. Cheng Lawrence R. Edwards Rudy Swennen 《Quaternary Research》2008,70(3):368-381
Dated oxygen and carbon isotopic profiles from a Holocene stalagmite (11.9–1.1 ka) from the Jeita cave, Lebanon, are compared to variations in crystallographic habit, stalagmite diameter and growth rate. The profiles show generally high δ18O and δ13C values during the late-glacial period, low values during the early Holocene, and again high values after 5.8 ka. On the basis of the good correlation between the morphological and crystallographic aspect of the stalagmite and its isotopic records, as well as the isotopic response of speleothems from central and northern Israel, we relate high δ18O and δ13C values to drier conditions. Between 6.5 and 5.8 ka an increase in isotopic values, a decrease in growth rate and stalagmite diameter suggest a transition from wet conditions in the early Holocene towards drier conditions in the mid-Holocene. The transition occurred in two steps, first a progressive change to drier conditions started at 6.5 ka but was interrupted by a short ( 100 years) return to wetter conditions, followed by an equally rapid (< 200 years) change to drier conditions. 相似文献