首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于Sentinel-3载荷OLCI和SRAL数据的内波同步探测研究   总被引:1,自引:1,他引:0  
The ocean and land color instrument(OLCI) and synthetic aperture radar altimeter(SRAL) installed aboard the Sentinel-3 satellite have been in orbit for operational uses. In this study, data collected from Sentinel-3 are used to investigate internal waves in the South China Sea. An internal wave is detected using an OLCI image with a resolution of 300 m, and an analysis was performed with a quasi-synchronous moderate-resolution imaging spectroradiometer(MODIS) image. The opposite characteristics of OLCI and MODIS images of the same internal wave are explained by the critical angle in brightness reversals. The unique observational geometry of the OLCI image and its influence on observations of internal waves are discussed. The distribution of σ0 and sea surface height anomalies(SSHAs) induced by internal waves are studied using SRAL records. The σ0 records of SRAL occasionally show less sensitivity to the modulation of internal waves, which may be attributed to the observational geometry, while SSHAs show obvious variations. The synchronous pairing of OLCI images and SRAL records are analyzed to extract the three-dimensional sea surface signatures induced by internal waves. The analysis demonstrates that the profile of SSHAs in the surface shows an opposite phase to the profiles of internal waves in the ocean. The opposite phase relationship, observed in the remote sensing view, is also confirmed with a laboratory experiment.  相似文献   

2.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

3.
As the main load-bearing component of fish cages, the floating collar supports the whole cage and undergoes large deformations. In this paper, a mathematical method is developed to study the motions and elastic deformations of elastic floating collars in random waves. The irregular wave is simulated by the random phase method and the statistical approach and Fourier transfer are applied to analyze the elastic response in both time and frequency domains. The governing equations of motions are established by Newton’s second law, and the governing equations of deformations are obtained based on curved beam theory and modal superposition method. In order to validate the numerical model of the floating collar attacked by random waves, a series of physical model tests are conducted. Good relationship between numerical simulation and experimental observations is obtained. The numerical results indicate that the transfer function of out-of-plane and in-plane deformations increase with the increasing of wave frequency. In the frequency range between 0.6 Hz and 1.1 Hz, a linear relationship exists between the wave elevations and the deformations. The average phase difference between the wave elevation and out-of-plane deformation is 60° with waves leading and the phase between the wave elevation and in-plane deformation is 10° with waves lagging. In addition, the effect of fish net on the elastic response is analyzed. The results suggest that the deformation of the floating collar with fish net is a little larger than that without net.  相似文献   

4.
Recent experimental results have shown that the presence of a steady current can significantly reduce the energy of transmitted waves. In this paper, a theory is developed to study the wave scattering by single or double vertical slotted barriers in the presence of a weak uniform current. The quasi-linear theory is based on an eigenfunction expansion method. Comparisons between theory and existing experimental results for both single slotted barrier and double slotted barriers show satisfactory agreements. In consideration of wave propagation in a weak current it is found that the friction factor used to characterize the head loss at the slotted barrier depends on both the geometry of the slotted barrier and the strength of the steady current.  相似文献   

5.
Effects of mesoscale eddies on the internal solitary wave propagation   总被引:3,自引:1,他引:2  
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.  相似文献   

6.
An analytical method is developed for the study of the wave defending effects of the V-type bottom-mounted breakwater. The breakwater is assumed to be rigid, thin, impermeable and vertically located in water of constant depth. The fluid domain is divided into three sub-regions by an imaginary interface. The velocity potential in each region is expanded by eigenfunctions. By satisfying the corresponding boundary conditions and matching conditions in and between sub-regions, a set of hnear algebraic equations can be obtained to determine the unknown coetfficients for the eigenfunction expansions for each sub-region. The accuracy of the present model is verified by a comparison with existing results for the case of an isolated breakwater. Numerical results, in the form of contour maps of the relative wave amplitude around the breakwater, are presented for a range of wave and breakwater parameters. The results show that the V-type bottommounted breakwater is generally effective in defending against waves. In general, the wave height in the protected area is about 20-50 percent of the incident wave height.  相似文献   

7.
As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard’s shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.  相似文献   

8.
Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, .and the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions  相似文献   

9.
An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.  相似文献   

10.
Long-term variations in a sea surface wind speed(WS) and a significant wave height(SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation,and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a(1988–2011) cross-calibrated, multi-platform(CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III(WW3) wave model forced by CCMP wind data. The results show the following.(1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH.(2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May(MAM) and December-January-February(DJF), followed by June-July-August(JJA), and smallest in September-October-November(SON).(3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons.(4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.  相似文献   

11.
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.  相似文献   

12.
ZOU  Zhi-li 《中国海洋工程》2003,17(4):551-564
The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.  相似文献   

13.
In this paper the 0-1 combined BEM is adopted to subdivide the computational domain boundary,and to discretize the Green’s integral expression based on Laplace equation.The FEM is used to subdivide the wave surface and deduce the surface equation which satisfies the nonlinear boundary conditions on the surface.The equations with potential function and wave surface height as an unknown quantity by application of Taylor expansion approach can be solved by iteration within the time step.In m-time iteration within the computational process of time step(n-1)Δt to nΔt,the results of the previous iteration are taken as the initial value of the two-order unknown terms in the present iteration.Thus,an improved tracking mode of nonlinear wave surface is established,and numerical results of wave tank test indicate that this mode is improved obviously and is more precise than the previous numerical model which ignored the two-order unknown terms of wave surface location and velocity potential function in comparison with the theoretical values.  相似文献   

14.
15.
LU  Jianhui 《中国海洋工程》2002,16(3):321-328
The purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vi-bration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to determine the optimal damper parameters under ocean wave loading. The force on the structure is determined by use of the linearized Morison equation. Investigation on the deck motion with and vvithout MTMD on the structure is made under design condi-tions. The results show that MTMD with the optimized parameters suppress the response of each structural mode. The sensitivity of optimum values of MTMD to characteristic wave parameters is also analyzed. it is indicated that a single TMD on the deck of a platform can have the best performance, and the small the damping value of TMD, the betler the vibration control.  相似文献   

16.
An efficient focusing model for generation of freak waves   总被引:1,自引:1,他引:0  
Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.  相似文献   

17.
This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.  相似文献   

18.
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).  相似文献   

19.
This study examines the reflection of regular and irregular waves from a partially perforated caisson breakwater located on a step bed. The step bed is treated as an idealized rubble mound foundation. Based on the linear potential theory, an analytical solution is developed to calculate the reflection coefficient of the structure subjected to regular waves. The matched eigenfunction expansion method is used for the solution. The regular wave method is also extended to irregular waves using a linear transfer function. The calculated results obtained for limiting cases are exactly the same as corresponding results given by the previous researchers. The present predictions also agree well with experimental data in the published literatures. Numerical experiments are conducted to examine the variations of the reflection coefficient versus its main effect factors, and some interesting results are presented.  相似文献   

20.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号