首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rock avalanche deposit was investigated in order to understand the chronological evolution of geological hazards and to evaluate the interaction of the triggering geodynamic processes in the valley Val Viola, Italian Alps. The deposit is situated west of the Alpe Dosdé, in a permafrost area with deep-seated gravitational deformations (DSGD) along a tectonic line. Based on its geomorphologic context, the rock avalanche was first interpreted as a result of slope stress release without exact timing. This hypothesis was tested by measuring the 10Be exposure date of quartz from one boulder from the rock avalanche. The age of 7430±460 years places the event in the early Holocene. The timing of the last deglaciation was constrained using the inner late glacial moraine of a moraine doublet in the valley Alpe Dosdé situated at an altitude between 2140 and 2120 m a.s.l. west of the rock avalanche. The 10Be concentrations of quartz yield minimum exposure ages of 11,480±670 and 10,850±820 years. Different proposals for potential triggering factors of the rock avalanche include (a) melting of the local valley glacier and slope stress release in the Val Viola, likely to play a minor role as trigger, because of the time delay between the deglaciation and the rock avalanche event. More likely are (b) enhanced crustal seismicity induced by post-glacial regional isostatic glacial rebound coupled with tectonic stress or/and (c) climate conditions with higher temperatures around 7430±460 years, resulting in an upwards movement of the permafrost limit and destabilization of the rock walls.  相似文献   

2.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   

3.
This paper describes the internal architecture of a push moraine formed by a winter-spring surge of Hagafellsjökull-Eystri (Iceland) in 1998/99. The sedimentary architecture of this push moraine consists of a multilayered slab of glaciofluvial sediments with a monoclinal structure that has been displaced laterally by the advancing ice margin. The crest and ice-distal face of the moraine consist of subhorizontal sediment sheets, while the ice-proximal face dips steeply (45° to 90°) towards the ice margin. The core of the moraine consists of frozen sediment and thin slabs of glacier ice are embedded in its proximal face. The sediment slabs are characterized by both brittle and ductile styles of deformation. We argue that the observed variation in deformation style is dependent on whether the glacial foreland was frozen or unfrozen at the time of displacement. Frozen foreland would behave in a brittle fashion, while unfrozen foreland is likely to have deformed in a more ductile manner. The associated spatial variations in the degree of foreland freezing could be explained by variation in ice-marginal snow cover. We conclude that the thermal regime of the foreland, and the timing of the ice advance, is of importance to the style of internal deformation found within ice-marginal push moraines.  相似文献   

4.
Li  Yanyan  Feng  Xuyang  Yao  Aijun  Zhang  Zhihong  Li  Kun  Wang  Qiusheng  Song  Shengyuan 《Landslides》2022,19(5):1069-1086

This paper presents a study on an ancient river-damming landslide in the SE Tibet Plateau, China, with a focus on time-dependent gravitational creep leading to slope failure associated with progressive fragmentation during motion. Field investigation shows that the landslide, with an estimated volume of 4.9?×?107 m3, is a translational toe buckling slide. Outcrops of landslide deposits, buckling, toe shear, residual landslide dam, and lacustrine sediments are distributed at the slope base. The landslide deposits formed a landslide dam over 60 m high and at one time blocked the Jinsha River. Optically stimulated luminescence dating for the lacustrine sediments indicates that the landslide occurred at least 2,600 years ago. To investigate the progressive evolution and failure behavior of the landslide, numerical simulations using the distinct element method are conducted. The results show that the evolution of the landslide could be divided into three stages: a time-dependent gravitational creep process, rapid failure, and granular flow deposition. It probably began as a long-term gravitationally induced buckling of amphibolite rock slabs along a weak interlayer composed of mica schist which was followed by progressive fragmentation during flow-like motion, evolving into a flow-like movement, which deposited sediments in the river valley. According to numerical modeling results, the rapid failure stage lasted 35 s from the onset of sudden failure to final deposition, with an estimated maximum movement rate of 26.8 m/s. The simulated topography is close to the post-landslide topography. Based on field investigation and numerical simulation, it can be found that the mica schist interlayer and bedding planes are responsible for the slope instability, while strong toe erosion caused by the Jinsha River caused the layered rock mass to buckle intensively. Rainfall or an earthquake cannot be ruled out as a potential trigger of the landslide, considering the climate condition and the seismic activity on centennial to millennial timescales in the study area.

  相似文献   

5.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

6.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A large-scale boulder beach close to a tidal glacier was examined at Eqip Sermia, Disko Bugt, West Greenland, in 1989. Photographs from 1912 and 1929 show an advance of the glacier of more than 1.5 km beyond its present location. Lateral and terminal moraines were formed in the sea, and subaerial parts and their positions can be detected from the old photographs. Today the outermost part of this moraine system has disappeared totally, except for about 1 km of the lateral moraine. The distal 300 m of the still existing moraine apparently has been displaced and transformed into a shape that, in plan view and cross-section, resembles a barrier spit. The material of the boulder beach consists mainly of coarse clasts with boulders of 1 m to more than 1.5 m in diameter. Distributions of clast sizes and sediment structures on the barrier surface also suggest wave and overwash dynamics as being the responsible agents. Located in the inner part of a fiord system, the fetches are restricted and thus normal waves are very small. Large waves generated by glacier calving, and/or sea-ice action, are therefore the only processes that can explain the geomorphology and clast distribution of this coastal feature.  相似文献   

8.
Canelles landslide: modelling rapid drawdown and fast potential sliding   总被引:4,自引:0,他引:4  
A large landslide (40 × 106 m3) was reactivated on the left bank of Canelles reservoir, Spain. The instability was made evident after a considerable reduction of the reservoir level. The drawdown took place during the summer of 2006 after several years of high water levels. The drawdown velocity reached values between 0.5 and 1.2 m/day (registered at low elevations). The paper reports the geological and geotechnical investigations performed to define the movement. The geometry of the slip surface was established from the detailed analysis of the continuous cores recovered in deep borings and from limited information provided by inclinometers. Deep piezometric records provided also valuable information on the pore water pressure in the vicinity of the failure surface. These data allowed validating a flow–deformation coupled calculation model, which takes into account the changes in water level that occurred 4  years previous to the failure as well as the average rainfall. The analysis indicates that the most likely reason for the instability is the rapid drawdown that took place during the summer of 2006. The potential sudden acceleration of the slide is also analysed in the paper introducing coupled thermal hydraulic and mechanical effects that may develop at the basal shearing surface of the sliding mass. The results indicate that the slide velocity may reach values around 16 m/s when displacement reaches 250 m.  相似文献   

9.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

10.
11.
A large ice sheet still covered almost all of Maine and eastern New England until ca. 15 cal ka BP, reaching south of 45 °S, despite rising summer insolation intensity and major ice recession elsewhere outside the North Atlantic region. Furthermore, the well-studied moraine belt along eastern coastal Maine, including the prominent Pineo Ridge delta/moraine complex and Pond Ridge moraine, indicates repeated readvances and stillstands between ca. 16 and 15 cal ka BP. This moraine belt reflects a considerable ice sheet response over eastern North America during this time period, coeval with the latter half of the European Oldest Dryas period. Moraine deposition was concurrent with reduction or elimination of North Atlantic meridional overturning, starting with the earlier onset of peak IRD and Heinrich Event 1 (HE-1). The existing 14C chronology suggests that the coastal moraine belt and the persistence of the ice sheet until ∼ 15 cal ka BP was a response to the severe cooling of the North Atlantic region after ∼ 17 cal ka BP.  相似文献   

12.
The Cordillera Huayhuash in the central Peruvian Andes (10.3°S, 76.9°W) is an ideal mountain range in which to study regional climate through variations in paleoglacier extents. The range trends nearly north-south with modern glaciers confined to peaks >4800 m a.s.l. Geomorphology and geochronology in the nearby Cordillera Blanca and Junin Plain reveal that the Peruvian Andes preserve a detailed record of tropical glaciation. Here, we use ASTER imagery, aerial photographs, and GPS to map and date glacial features in both the western and eastern drainages of the Cordillera Huayhuash. We have used in situ produced cosmogenic 10Be concentrations in quartz bearing erratics on moraine crests and ice-polished bedrock surfaces to develop an exposure age chronology for Pleistocene glaciation within the range. We have also collected sediment cores from moraine-dammed lakes and bogs to provide limiting 14C ages for glacial deposits. In contrast to the ranges to the north and south, most glacial features within the Cordillera Huayhuash are Lateglacial in age, however we have identified features with ages that span 0.2 to 38 ka with moraine sets marking the onset of glacier retreat at 0.3 ka, 9–10 ka, 13–14 ka, 20–22 ka, and >26 ka. The range displays a pronounced east-west variation in maximum down-valley distance from the headwall of moraine crests with considerably longer paleoglaciers in the eastern drainages. Importantly, Lateglacial paleoglaciers reached a terminal elevation of 4000 m a.s.l. on both sides of the Cordillera Huayhuash; suggesting that temperature may have been a dominant factor in controlling the maximum glacier extent. We suggest that valley morphology, specifically valley slope, strongly influences down-valley distance to the maximum glacier extent and potential for moraine preservation. While regionally there is an extensive record of older (>50 ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the apparent lack of old moraines in this locality may be explained by the confined morphology of the Cordillera Huayhuash valleys that has inhibited the preservation of older glacial geomorphic features.  相似文献   

13.
Sabkhas are ubiquitous geomorphic features in eastern Saudi Arabia. Seven brine samples were taken from Sabkha Jayb Uwayyid in eastern Saudi Arabia. Brine chemistry, saturation state with respect to carbonate and evaporate minerals, and evaporation-driven geochemical reaction paths were investigated to delineate the origin of brines and the evolution of both brine chemistry and sabkha mineralogy. The average total dissolved solids in the sabkha brines is 243 g/l. The order of cation dominance is Na+   >>  Mg2+ >>  Ca2+>K+, while anion dominance is Cl >> SO4 2− >> HCO3 . Based on the chemical divide principle and observed ion ratios, it was concluded that sabkha brines have evolved from deep groundwater rather than from direct rainfall, runoff from the surroundings, or inflow of shallow groundwater. Aqueous speciation simulations show that: (1) all seven brines are supersaturated with respect to calcite, dolomite, and magnesite and undersaturated with respect to halite; (2) three brines are undersaturated with respect to both gypsum and anhydrite, while three brines are supersaturated with respect to both minerals; (3) anhydrite is a more stable solid phase than gypsum in four brines. Evaporation factors required to bring the brines to the halite phase boundary ranged from 1.016 to 4.53. All reaction paths to the halite phase boundary follow the neutral path as CO2 is degassed and dolomite precipitates from the brines. On average, a sabkha brine containing 1 kg of H2O precipitates 7.6 g of minerals along the reaction path to the halite phase boundary, of which 52% is anhydrite, 35.3% is gypsum, and 12.7% is dolomite. Bicarbonate is the limiting factor of dolomite precipitation, and sulfate is the limiting factor of gypsum and anhydrite precipitation from sabkha brines.  相似文献   

14.
The northern coast of the Peloponnesus (Greece) is characterized by high seismic activity related to the Gulf of Corinth opening with an extension rate of 16 mm y− 1. Studies presented in this paper focus on the characterization of links between tectonic and slope deformations on the Panagopoula slope, located on the southern coast. The approach is centred on qualitative and quantitative data acquisition based on geological and geomorphological investigations, geophysical imagery by electrical resistivity tomography and slope displacement monitoring.Firstly, we highlight two different types of slope deformation on Panagopoula: a superficial landslide affecting weathered limestone, and a large-scale deformation without global failure expressed in the field. Tectonic features play a major role in these two dynamic processes, taking into account the strong geometrical link between the inherited fractures and gravitational scarps mapped in the field.Secondly, the displacements survey network, distributed on both sides of a significant fault crossing the slope, allows the quantification of slope displacements underlying two components: (i) a gravitational sliding (N010) along the slope, and (ii) a supposed tectonic component (N240).  相似文献   

15.
We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages (n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance.Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini had receded to just outboard of the outer Holocene moraines at Lago Frías and Lago Pearson (Anita) prior to 10,400 ± 40 14C yrs BP (12,270 ± 100 cal yrs BP) and 9040 ± 45 14C yrs BP (10,210 ± 50 cal yrs BP), respectively. The most extensive recession registered during the early Holocene was in Agassiz Este Valley, where the Upsala Glacier had pulled back behind the outer Holocene moraine, reaching close to the present-day glacier terminus before 8290 ± 40 14C yrs BP (9300 ± 80 cal yrs BP).The radiocarbon-dated fluctuations of the Lago Argentino glacier in late-glacial time, given here, are in accord with changes in ocean mixed layer properties, predominately temperature, derived from the isotopic record given here of ODP Core 1233, taken a short distance off shore of the Chilean Lake District. It also matches recently published chronologies of late-glacial moraines in the Southern Alps of New Zealand on the opposite side of the Pacific Ocean from Lago Argentino. Finally, the timing of the late-glacial reversal of the Lago Argentino glacier fits the most recent chronology for the culmination of the Antarctic Cold Reversal (ACR) in the deuterium record of the EPICA Dome C ice core from high on the East Antarctic Plateau. Therefore, we conclude that the climate signature of the ACR was widespread in both the ocean and the atmosphere over at least the southern quarter of the globe.  相似文献   

16.
Sample cylinders of two galena ore hand specimens from Braubach, Germany were axially shortened in the strain rate range 5 × 10−5 s−1–5 × 10−7 s−1 at a confining pressure of 200 (300) MPa and at temperatures of 20 °C–600 °C. Neutron diffraction analyses of the crystallographic preferred orientation (texture) were carried out before and after experimental deformation on the same sample cylinder. Up to a deformation temperature of 300 °C and a strain rate of 5 × 10−6 s−1 a more or less complete <110> fiber texture develops, the strength of the fiber texture only depending on strain and the strength of the original preferred orientation. At slower strain rate and higher temperature, there is a distinct decrease of the fiber texture development. Diffusional mass transfer starts to become a significant deformation mechanism. Deformation at 500 °C changes the original texture only slightly, which indicates a rapid increase of importance of diffusional flow processes. The alteration of the accompanying sulfosalts indicates that the temperature is high enough for the movement of atoms. The microstructure only reveals remarkable deformation structures at higher strains and in areas of locally higher stresses. Received: 10 June 1997 / Accepted: 14 May 1998  相似文献   

17.
This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral–terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. – 2008 Elsevier Ltd. All rights reserved.  相似文献   

18.
RTK-GPS data, aerial photographs and Aster images were used to quantify volume, surface elevation, terminus position and area changes of Glacier No. 4 of Sigong River over Mt. Bogda, Tianshan during the period from 1962 to 2009. Glacier surface elevation of the tongue area decreased by 15 ± 8 m (0.32 ± 0.17 m a−1) and ice volume loss reached 0.014 ± 0.008 km3 (0.013 ± 0.007 km3 w. e.). The glacier terminus retreated at a rate of 8.0 m a−1 and the area decreased by about 0.53 km2, accounting for 15.8% of the glacier area in 1962 (3.33 km2). The changes can be primarily attributed to the significant increase in temperature in this region. A comparison with glacier changes by field measurements in other regions of eastern Tianshan showed obvious spatial differences in the magnitude of the changes, owing to a combination of regional climate change and topographical factors.  相似文献   

19.
We have investigated the geochemistry of supraglacial streams on the Canada Glacier, Taylor Valley, Antarctica during the 2001–2002 austral summer. Canada Glacier supraglacial streams represent the link between primary precipitation (i.e. glacier snow) and proglacial Lake Hoare. Canada Glacier supraglacial stream geochemistry is intermediate between glacier snow and proglacial stream geochemistry with average concentrations of 49.1 μeq L−1 Ca2+, 19.9 μeq L−1 SO42−, and 34.3 μeq L−1 HCO3. Predominant west to east winds lead to a redistribution of readily soluble salts onto the glacier surface, which is reflected in the geochemistry of the supraglacial streams. Western Canada Glacier supraglacial streams have average SO42−:HCO3 equivalent ratios of 1.0, while eastern supraglacial streams average 0.5, suggesting more sulfate salts reach and dissolve in the western supraglacial streams. A graph of HCO3 versus Ca2+ for western and eastern supraglacial streams had slopes of 0.87 and 0.72, respectively with R2 values of 0.84 and 0.83. Low concentrations of reactive silicate (> 10 μmol L−1) in the supraglacial streams suggested that little to no silicate weathering occurred on the glacier surface with the exception of cryoconite holes (1000 μmol L−1). Therefore, the major geochemical weathering process occurring in the supraglacial streams is believed to be calcite dissolution. Proglacial stream, Anderson Creek, contains higher concentrations of major ions than supraglacial streams containing 5 times the Ca2+ and 10 times the SO42−. Canada Glacier proglacial streams also contain higher concentrations (16.6–30.6 μeq L−1) of reactive silicate than supraglacial streams. This suggests that the controls on glacier meltwater geochemistry switch from calcite and gypsum dissolution to both salt dissolution and silicate mineral weathering as the glacier meltwater evolves. Our chemical mass balance calculations indicate that of the total discharge into Lake Hoare, the final recipient of Canada Glacier meltwater, 81.9% is from direct glacier runoff and 19.1% is from proglacial Andersen Creek. Although during a typical, low melt ablation season Andersen Creek contributes over 40% of the water added to Lake Hoare, its overall chemical importance is diluted by the direct inputs from Canada Glacier during high flow years. Decadal warming events, such as the 2001–2002 austral summer produce supraglacial streams that are a major source of water to Lake Hoare.  相似文献   

20.
Continuous heavy rainfall hit northern Peru in the second half of the 2008/2009 summer season. From the end of January to the beginning of March, the Cordillera Huayhuash experienced abnormally high precipitations that exceeded 270?mm. The antecedent rainfall, aggravated with a severe rainstorm of 20?mm on March 7 triggered a large debris flow in the upper Carhuacocha Valley early in the morning on March 8. The debris flow interrupted drainage from the upper part of the valley damming a lake in the narrow depression between the trough slope and the lateral moraine. As a result of the drainage interruption, water percolated through the moraine dam of Cangrajanca Lake where a secondary mass movement occurred in its inner slope. In September 2009, we mapped the debris flow and related landforms and estimated the total area and volume of both mass movements using geodetic measurements. About 104,000?m3 of sediments was moved from the trough slope towards the moraine from which 534,000?m3 flowed to Cangrajanca Lake subsequently. We analysed the rainfall conditions that triggered the debris flow using rainfall data from the nearby stations. We also compared the precipitation preceding the event with the rainfall thresholds for debris flow initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号