首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
青海南部地区初冬雪灾变化及环流特征   总被引:2,自引:1,他引:2  
利用青海南部地区1961~2004年气温、降水、积雪等资料,分析了初冬雪灾变化及环流特征。结果表明:青海南部地区初冬降雪量呈缓慢减少的变化趋势,平均积雪量变化与年及其它季相比,呈微弱的减少趋势,平均积雪量与气温呈反相关,而与降雪量呈正相关;影响青海南部地区初冬降雪的主要天气系统是西风带南北槽结合类、移动性高原槽类、高原低涡类、高原切变类、孟加拉湾风暴类;典型多雪(少雪)年高原及南亚与中亚地区850 hPa温度距平场配置为“南正北负”(“南负北正”)型5、00 hPa高原与东部沿海地区距平分布为“西低东高”(“西高东低”)型。  相似文献   

2.
1961—2004年青海积雪及雪灾变化   总被引:4,自引:3,他引:4       下载免费PDF全文
利用1961—2004年青海省海西东部和环青海湖地区地面气象观测资料和北半球500 hPa高度场网格点资料, 整理了地表积雪序列和雪灾年表, 并对积雪的年代际变化特征和雪灾发生的机理及其成因进行了研究。结果表明:海西东部和环青海湖地区出现区域性雪灾的几率为15.9% (7/44), 而出现局部雪灾的几率仅为9.1% (4/44)。海西东部和环青海湖地区近44年来冬季累计积雪量的缓慢增加易形成雪灾和低温冻害。造成该区域主要降水的影响系统是高原槽、蒙古槽和高原低涡, 若后冬至春季北半球500 hPa极涡中心偏向西 (东) 半球, 青藏高原与我国东部沿海地区高度距平场形成“西低东高 (西高东低)”的距平分布型时, 海西东部和环青海湖地区容易出现多 (少) 雪年。  相似文献   

3.
选取青海东南部黄南区域范围内2个气象观测站近56a(1960~2015年)逐月积雪资料,利用数理统计和线性回归方法分析积雪的变化趋势,对黄南南部年积雪日数及最大雪深变化特征进行了诊断研究。结果表明:1)黄南南部积雪日数呈增加趋势,增加速率为0.152d/a;2)最大雪深春、冬季呈弱增加趋势,秋季呈弱减少趋势,总体呈弱减少趋势;3)黄南地区的积雪日数与最大雪深呈显著相关关系,一般雪深越大积雪日数就越长;4)年和各季积雪日数均发生了由少到多的突变,春季发生在1965年,秋季在1973年,冬季在1974年发生了突变,年突变发生于1970年;5)由小波分析可知,近56年来,黄南南部地区积雪日数6年的振荡周期比较明显外,在20世纪60~70年代末存在准3a振荡周期,其他周期信号强度都较弱。   相似文献   

4.
青藏高原冬季积雪时空变化特征EOF分析   总被引:2,自引:0,他引:2  
通过对青藏高原冬季积雪的EOF分析.揭示了青藏高原冬季积雪的时间变化和空间分布特征,分析出高原冬季积雪的突变现象.对青藏高原冬季积雪时空变化规律提出了自己的观点。  相似文献   

5.
通过对青藏高原冬季积雪的EOF分析,揭示了青藏高原冬季积雪的时间变化和空间分布特征,分析出高原冬季积雪的突变现象,对青藏高原冬季积雪时空变化规律提出了自己的观点.  相似文献   

6.
根据三次Landsat遥感数据,应用GIS空间分析方法,分析了1975-2000年珠峰地区定日县常年积雪变化特征,并探讨其与气候变化之间的关系。结果表明,1975-2000年间定日县内常年积雪总计减少了7.49%,减少面积为105.35 km2,主要发生在珠峰及其周围高大山体常年积雪覆盖的边缘地区,其中,海拔5 000~6 000 m之间减少最多,占减少总面积的70%左右。气温和降水量变化是导致常年积雪变化的主要因素,特别是在全球变暖的大背景下,珠峰地区的气温上升趋势是其主要驱动因子。气温升高导致珠峰及周围高大山脉边缘的冰川和常年积雪不断消融,加上1980年代的降水量相对较少,使得1975-1992年常年积雪面积不断减少;但1990年代后期降水量增加显著,研究区东南部海拔相对较低的区域有较多的积雪累积,1993-2000年常年积雪面积略有增加。  相似文献   

7.
新疆是我国积雪资源最丰富的区域之一,也是雪灾多发区之一,预测最大积雪深度,可以为雪灾的预警与防范提供参考和依据。本研究基于建立的雪灾灾损指数,确定了新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度,结果表明:该模型可用于新疆特重雪灾区最大积雪深度预测,但预测精度仍有待提升;塔城市、尼勒克县将于2025—2029年连续出现最大积雪深度偏高事件,2039年青河县将出现最大积雪深度的极大值,因此应关注可能发生雪灾的年份与县(市),积极做好雪灾的防御工作。  相似文献   

8.
新疆是我国积雪资源最丰富的区域之一,也是雪灾多发区之一,预测最大积雪深度,可以为雪灾的预警与防范提供参考和依据。本研究基于建立的雪灾灾损指数,确定了新疆特重雪灾区域;进一步聚焦特重雪灾区的8个县(市),包括阿勒泰市、福海县、青河县、塔城市、托里县、沙湾市、尼勒克县和伊宁县,分别建立县域RBF网络模型,预测2021—2050年年最大积雪深度,结果表明:该模型可用于新疆特重雪灾区最大积雪深度预测,但预测精度仍有待提升;塔城市、尼勒克县将于2025—2029年连续出现最大积雪深度偏高事件,2039年青河县将出现最大积雪深度的极大值,因此应关注可能发生雪灾的年份与县(市),积极做好雪灾的防御工作。  相似文献   

9.
新疆阿勒泰地区积雪变化分析   总被引:2,自引:0,他引:2  
采用阿勒泰地区7个测站1961~2008年逐月最大积雪深度、积雪和降雪日数及其初终日以及冬季(11至次年3月)平均气温、平均最高、最低气温及降水量资料,运用线性趋势、Mann-Kendall突变检验及R/S分析法对阿勒泰地区积雪变化进行了分析研究。结果表明:该地区冬季平均气温呈明显的上升趋势,最低气温的上升更为显著;降水量呈显著增多趋势。该地区大部地方积雪、降雪最早出现在9、10月,最迟在次年4、5月。历年平均最大积雪深度和积雪日数的年变化呈单峰型,降雪日数分布则较复杂;在空间分布上,积雪深度最大值在阿勒泰站,最小值在福海站;积雪日数福海站最少,吉木乃站最多;降雪日数自西向东逐渐减小。最大积雪深度呈显著的增加趋势、积雪和降雪日数趋势变化不显著,但在空间分布上有差异;受积雪和降雪初日推后的影响,积雪期和降雪期均呈显著的减少趋势。突变检测表明,就全区平均来说最大积雪深度在1983年前后发生了显著的突变,与冬季降水量的变化一致;平均积雪和降雪日数则比较稳定,没有发生显著的突变,各区域变化与全区不完全同步。R/S分析表明,最大积雪深度、积雪和降雪日数在未来具有反持续性;平均降雪日数、福海站最大积雪深度、吉木乃站积雪日数、布尔津站降雪日数的反持续性相对最强。  相似文献   

10.
选取阿尔山气象站1981—2015年冷季(10月—次年4月)气象资料,利用滑动平均、线性倾向估计和Mann-Kendall等方法,对年最大积雪深度、积雪日数、气温和降水量进行分析。结果表明,阿尔山地区年最大积雪深度主要发生在1月至3月,其中2月份概率最大,达50%;34 a内最大积雪深度呈上升趋势(2.77 cm/10a),年平均增加0.98%,且年最大积雪深度在1998年发生了突变,即在1998年之前增长缓慢,在2000年以后上升趋势显著。积雪日数的统计分析表明,初始积雪日数和有效积雪日数呈现略微减少趋势,而稳定积雪日数有微弱的增加趋势;通常初始积雪日数比有效积雪日数大30天左右。年最大积雪深度与稳定积雪时期的降水量、积雪日数、日照时数有显著的相关性,相关系数分别为0.647、0.515、0.584,但与稳定积雪时期的气温没有明显的相关性。在全球变暖的大环境下,积雪深度随着降水量和日照时数的增加而增加,且积雪深度受降水量的影响大于日照时数的影响。  相似文献   

11.
基于实际灾情的青海高原雪灾等级(评估)指标研究   总被引:1,自引:0,他引:1  
郭晓宁  李林  王军  李兵  李海凤 《气象科技》2012,40(4):676-679
利用1951—2008年青海高原雪灾实际灾情资料,通过统计计算各年份雪灾造成的牲畜死亡率,并进行排序,参照了计算SPI(标准化降水指数)不同等级干旱在全部干旱中所占比例的过程,确定了不同雪灾等级的阈值,制订了基于实际灾情的雪灾指标。并对几次典型雪灾过程进行评估检验,结果表明:本研究确定的雪灾等级与DB63雪灾标准基本一致。在青海高原牧区,用雪灾造成的实际牲畜死亡率来确定雪灾等级指标,评估雪灾受灾程度,是一种较为科学和具有很好的现实指导意义的新方法。  相似文献   

12.
赵红旭 《气象》1999,25(4):48-51
利用青藏高原积雪深度资料分析了青藏高原冬季1月平均积雪深度与云南夏季气温、降不的联系。结果表明:青藏高原冬季积雪与云南夏季气温和降水有较好的联系,即青藏高原冬季1月积雪峰值年对应云南北部7-8月气温低谷年,云南夏季易出现“8月低温”天气;青藏高原积雪多的年份,昆明夏季6-8月降水异常偏我,云南大部7月降水异常偏多,云南哀牢山脉以北、以东地区8月降水异常偏多。500hPa异常环流分析表明,冬季青藏高  相似文献   

13.
1959-2003年中国天山积雪的变化   总被引:6,自引:0,他引:6  
利用天山山区17个气象站1959-2003年的气象观测资料,分析了中国天山山区冬季(12-2月)气温、积雪变化趋势特征, 并采用Mann-Kendall统计量对最大积雪深度的变化进行了突变检验,通过GIDS插值方法和DEM数据计算了它的空间分布。结果表明,天山山区冬季平均气温存在明显的上升趋势,倾向率为0.44℃/10 a,与北半球冬季平均气温的变化有着较好的相关性,最低气温的增加更为明显,其倾向率为0.79℃/10 a。45 a来天山山区最大积雪深度具有明显的增加趋势,倾向率为1.15 cm/10 a,检测表明,最大积雪深度在1977年前后发生了突变;与多年平均相比,积雪深度增加幅度最大的是西天山地区的昭苏、尼勒克,分别增加了39.3%和39.7%。天山山区积雪变化以2.8 a左右的周期为主。另外,积雪日数的增加主要出现在≥10 cm的积雪深度上;积雪初、终日期并没有表现出明显的提前或推迟。  相似文献   

14.
青海省雪灾气候预测的地气图方法   总被引:3,自引:5,他引:3  
通过对青海省1960年以来全省各气象站的雪灾资料统计分析,结合青海省南部(下称青南)地区8月份的地气形势,发现二者之间有很好的相关:夏季地热涡和正鞍形场多对应冬季为重雪灾;地冷涡和负鞍形场多对应冬季为轻灾或无灾。春夏季上游的中强地震可加强冬季的雪灾。由此表明,利用地气图方法可以较好地预测青海省的雪灾。  相似文献   

15.
青海省气候变化的区域性差异及其成因研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 利用1961-2006年青海不同区域气象资料,分析了年平均气温,年平均最低、最高气温和降水量等气候要素的变化趋势、年代际变化和气候突变前后的差异性,分析了气候显著变化并存在明显区域性差异的可能归因。结果表明:近46 a来青海不同区域年平均气温均呈现出显著上升趋势,其中以柴达木盆地增暖最为明显,气候倾向率达0.44℃/10a;降水量变化表现出明显的区域性差异,柴达木盆地年降水量显著增多,气候倾向率为6.67 mm/10a,而东部农业区年降水量则呈现出减少趋势。温室气体浓度的显著增加、云量变化、高空水汽输送的变化以及下垫面状况差异等因素是造成青海气候显著变化并具有明显区域性特征的可能成因。  相似文献   

16.
冬季积雪对我国夏季降水预测的评估分析   总被引:7,自引:2,他引:7  
孙林海  宋文玲 《气象》2001,27(8):24-27
根据高原积雪和高纬积雪与我国夏季降水相关分析的结果,将高原积雪和高纬积雪作为独立因子分别对我国夏季降水预测做了检验,结果表明:高原积雪较高纬积雪效果要好,冬季高原积雪异常偏多时,长江流域夏季易发生洪涝,这也是预测汛期降水的一个重要信号。  相似文献   

17.
青藏高原积雪日数的气温敏感度分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据青藏高原气象台站观测积雪日数和均一化气温数据,对高原1951—2004年积雪日数对气温的敏感度进行了量化分析。研究表明,无论是极值敏感度还是当前气候下的敏感度,空间上都呈现出高原四周积雪较中部对气温的敏感程度高的情况。各台站积雪日数对气温最敏感时的临界气温与海拔有着极好的反相关关系,而极值敏感度与海拔虽然也有一定的反相关,但相关程度远不如前者高。在当前气候状态下,有相当一部分台站的平均气温还未达到临界值,这些台站在秋、冬、春、夏季分别占总台站数的36%、39%、47%和11%。未来气候继续变暖背景下,这部分台站积雪日数对气温的敏感度会进一步加大,即积雪对气温的升高会更加敏感。  相似文献   

18.
利用青藏高原98个气象台站日气温、降水以及日降雪和积雪天气现象的观测数据,引进"at-risk"积雪评估方法,对当前气候状态下和未来气温升高情况下高原积雪形成过程的脆弱性进行了评估。研究表明,当前青藏高原约78%(秋季)和81%(春季)台站的固态降水受气温升高影响而减少,而分别约有33%和36%台站的降雪积累与否也受此影响。也就是说,受气温升高影响,青藏高原降雪占总降水比例及积雪占总降雪比例都在减小,这些台站所在区域已成为脆弱积雪区,这加速了高原积雪期的缩短。在到2050年气温升高2.5℃的假设下,青藏高原的脆弱积雪区范围将进一步扩大,这将加剧青藏高原的热源作用,对区域乃至大陆尺度的天气气候产生重要影响。  相似文献   

19.
气候变化对青海天然牧草影响研究   总被引:16,自引:0,他引:16  
根据青海省4个牧业气象代表站点1988-2005年天然牧草数据和同期气候资料,分析了青海天然牧草生长发育与气象条件的关系,探讨了气候变化对青海省牧草发育期、高度及产量形成的影响。研究表明:青南东部地区影响牧草返青出现的主要因素是热量条件,而青南西部和环湖地区牧草返青期的早晚主要受制于水分条件;两地区牧草黄枯期出现的迟早与日平均气温稳定通过5℃的终日相接近;在干旱、半干旱地区,天然牧草产量形成的主要因素取决于水分条件,年降水越多,牧草产量越高;青南东部的半湿润地区,温度对产量的影响大于降水对产量的影响。在全球气候变暖的背景下,青海省半湿润牧业区,随气温升高,牧草产量有所增加,草场载畜量有所上升;但在干旱、半干旱牧业区,气候变暖加剧草地水分的散失,牧草的生长发育受阻,产草量下降,同时,优良牧草在草场中的比例下降,杂类草的数量和比例上升,草场朝不良方向演替,呈现退化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号