首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
Understanding how carbonate factories influence platform evolution is either based on qualitative conceptual models or quantitative numerical stratigraphic forward models. This study establishes new production depth profiles for four Cenozoic carbonate factories and uses two-dimensional stratigraphic forward models to explore how interactions between sediment production and transport within carbonate systems influence carbonate platform development. Newly established production/depth profiles are used to model photozoan and heterozoan carbonate grain associations, and the associated carbonate producing factories, and results are compared with well-studied outcrop successions. Sediment production from photozoan and heterozoan grain associations is also equalized, so that the total sediment production is the same but the depth/production profiles retain their distinctly different form. Thus, the effect of the different production profiles can be assessed. Ramps form when sediment diffusional transport rates are high relative to production rates and flat-top steep-margin platforms form when sediment diffusional transport rates are low relative to production rates, whether they are photozoan or heterozoan grain associations. The control exerted by sediment production and transport is expressed as a sediment transport–production ratio where transport ratio is a diffusional sediment transport in two-dimensions and production ratio is the total sediment production rate which is the product of a production profile that varies in depth and laterally. The transport–production ratio is a key control on the evolution and geometry of carbonate platforms. This is the case with different production profiles (both euphotic and oligophotic) and in mixed grain-size and mixed transport-rate systems. Carbonate producing factories significantly influence the rate of sediment production, the depth distribution of sediment production (production profiles), as well as the type of grain sizes produced (influencing resistance to erosion). Thus, different types of carbonate grain associations, and the associated carbonate producing factories, can produce the critical differences between carbonate platform geometries.  相似文献   

2.
A new method for analysing observed aeolian sand transport rate profiles of the kind obtained by Williams is presented. The method involves a mathematical model of aeolian saltation. Detailed information about the saltation process can be calculated from the transport rate profile by means of this model. The method is used to perform a re-analysis of Williams' trap data. Among the main findings of this analysis is that the grain borne shear stress appears to be a smaller fraction of the total shear stress than assumed by Bagnold & Owen in their theories of aeolian saltation. Other findings are that the probability distribution of the jump height of the grains does not depend much on the wind speed once the saltation is established, and that the vertical component of the mean launch velocity decreases with the grain size. It is approximately inversely proportional to the grain diameter. Our estimates of the landing angles indicate that estimates of the impact angles obtained from photographically recorded trajectories are too small due to biased sampling. The influence of grain shape on the transport characteristics is mainly due to changes in the grains' ability to jump when hitting the bed. It is found that angular grains have a lower mean jump height than spherical grains.  相似文献   

3.
The Avon River estuary of Nova Scotia was studied with the intention of analysing the relations between grain-size distributions and hydraulics. The Avon is macrotidal; tidal ranges up to 15·6 m generate tidal currents up to 1·7 m s?1. Maximum current speed increases from the mouth (seaward end) to the head (shoreward end) of the estuary. Mean grain size decreases from the estuary mouth to the head. Thus, there is an inverse relationship between mean grain size and current speed. Consequently, textural parameters do not directly reflect hydraulic conditions. Graphical dissection of cumulative frequency curves into their component grain populations reveals a large coarse population at the estuary mouth that is absent at the head. There are several relationships between hydraulics and cumulative curves. Shields’ criterion predicts that all sediment in the system can be transported so that the large coarse population at the estuary mouth is not a lag. Local maximum shear velocity nearly equals the settling velocity of the grain size at the boundary of the coarse (C) and intermediate (A) grain populations. This has been previously interpreted to signifiy a transition from traction to intermittent suspension transport, and implies that the C population is a function of traction and that the A population is related to intermittent suspension (Middleton, 1976). Each grain population is transported at a different rate; suspended grains travel almost an order of magnitude faster than grains moved by traction according to Einstein's transport formula. Sediment transport paths in the estuary were determined from bedform migration directions and the computed net sediment transport per tidal cycle using Engelund and Hansen's formula. The areal distribution of the transport paths, combined with the differential transport rates of each grain population, produces hydraulic sorting. Hydraulic sorting causes coarse sediment to be excluded from the estuary head and creates the inverse relationship between current speed and mean grain size.  相似文献   

4.
河床粗化过程中推移质输移特征试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究河床粗化破坏与形成过程中推移质的输移特征,基于一套新型的接沙系统,在上游无来沙条件下,进行了3组不同床沙级配的水槽试验,研究了递增梯级流量作用下河床粗化破坏与形成的过程,采集到一套高精度(0.1 g)、高频率(1 Hz)的实时推移质输沙率及分时段输沙级配数据,分析了累积输沙量、输沙率及输沙级配的变化特征。结果表明,粗化过程中累积输沙量随时间基本呈幂函数规律增长,且"粗化破坏再形成"的累积输沙量曲线出现明显转折点;推移质输沙率表现出明显的非恒定性,其粗化形成阶段的耗时要远大于粗化破坏阶段的时间,两者之比范围为3.5~20.5;推移质输沙级配中粗颗粒比例随时间变化趋势与输沙率相似,在输沙率达到峰值附近时,输沙级配与原始床沙级配相同。  相似文献   

5.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   

6.
在深圳湾西北部海域进行表层沉积物取样,通过粒度分析获取沉积物粒度参数。结果表明,该海域中北部沉积物以粉砂为主,分选较差;局部有较粗的砂、砾沉积物分布,分选性差。地质统计分析结果显示,粒度参数半方差—距离的相关性与沉积物粒度参数的空间分布有关,剔除空间“异常”值后,可在半方差图中获取粒度参数的变程值,并将其作为粒径趋势模型的特征距离。粒径趋势分析表明,海湾西部海域的沉积物向东北净输运,深圳河口海域的沉积物偏西向输运,从而在海湾北部近岸海域形成一个沉积物汇聚中心,这与水动力观测结果基本吻合。此外,210Pb测年结果也表明,这个沉积物汇聚中心的沉积速率也相应较高,显示出较强的淤积趋势。  相似文献   

7.
Aeolian transport rates were measured for three sands: a quartz sand (relative density 2.68, sphericity 0.73), a shelly sand (relative density 2.64, sphericity 0.59, carbonate content 67%), and granular aluminium oxide (relative density 3.95, sphericity 0.67). Low sphericity depresses the transport rate, particularly at high wind speeds; high density also does so but the effect is more marked at low transporting wind speeds. The sand of low sphericity undergoes longer saltations than the other materials, but is dislodged less frequently than they are and is transported less freely in a given wind. Of the more spherical materials, the denser was the least effective at extracting energy from the wind for grain transport in the range of our experiments. Both of the more spherical materials showed evidence of a fairly sudden transition of transport behaviour at modest wind speed. It is inferred that this marks the transfer of the function of grain dislodgement from direct wind action to inter-granular collision. The transition did not occur in experiments on the material of lower sphericity. For a given transport rate, wind speed near the bed is highest for the grains of low sphericity (by a considerable margin) and lowest for the more compact quartz grains. Propensity for transport by wind is greatest for the quartz sand, less so for the heavy material and least for the material of low sphericity.  相似文献   

8.
A detailed analysis of chemical zoning in two garnet crystals from Harpswell Neck, Maine, forms the basis of an interpretation of garnet nucleation and growth mechanisms. Garnet apparently nucleates initially on crenulations of mica and chlorite and quickly overgrows the entire crenulation, giving rise to complex two‐dimensional zoning patterns depending on the orientation of the thin section cut. Contours of Ca zoning cross those of Mn, Fe and Mg, indicating a lack of equilibrium among these major garnet constituents. Zoning of Fe, Mg and Mn is interpreted to reflect equilibrium with the rock matrix, whereas Ca zoning is interpreted to be controlled by diffusive transport between the matrix and the growing crystal. Image analysis reveals that the growth of garnet is more rapid along triple‐grain intersections than along double‐grain boundaries. Moreover, different minerals are replaced by garnet at different rates. The relative rate of replacement by garnet along double‐grain boundaries is ordered as muscovite > chlorite > plagioclase > quartz. Flux calculations reveal that replacement is limited by diffusion of Si along double‐grain boundaries to or from the local reaction site. It is concluded that multiple diffusive pathways control the bulk replacement of the rock matrix by garnet, with Si and Al transport being rate limiting in these samples.  相似文献   

9.
沉积物粒径趋势分析:原理与应用条件   总被引:16,自引:1,他引:15  
高抒 《沉积学报》2009,27(5):826-836
长期以来,沉积学家尝试用粒度数据来识别沉积环境的类型或判定物质运动的方式,但只取得了部分成功。粒度参数还有一项可能的用途,即用其平面差异来获取物质输运信息。沉积学家将粒度参数的平面差异定义为“粒径趋势”,并建立了以“粒径趋势分析”为基础的定性物质输运模型。粒径趋势分析的基本科学问题包括:如何提取粒径趋势信息;如何确定含有物质输运信息的粒径趋势类型;粒径趋势分析的应用条件是什么。粒径趋势信息可通过粒径趋势矢量的定义及其各向异性显著性的检验而获得,而经验证据也显示,含有物质输运信息的粒径趋势类型是存在的。初步研究表明,粒径趋势分析应满足以下条件:粒径趋势矢量具有显著性;底质采样深度应代表同一时间尺度;平面采样间距应符合地统计法的规则;避免使用位于采样网格边缘上的采样点的粒径趋势矢量;沉积物样品应属于同一个输运体系或研究区处于堆积状态。但是,由于不同来源的物质混合、源区沉积物特征及变化、不同水动力条件下的物质输运、悬沙沉降、溶解态—颗粒态物质转换、物质输运动力的侧向分布等因素与粒径趋势形成之间的关系还不够明确,因此这些条件还不是完备的,这个问题的解决依赖于粒径趋势形成的过程和机制的进一步研究。  相似文献   

10.
In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ‘grain-size regulated’. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by changes in the upstream supply of sand owing to both tributary floods and high dam releases) are important in regulating sand transport over timescales of days to months. In this study, suspended-sand data are analysed in conjunction with bed grain-size data to determine whether changes in the grain size of sand on the bed of the channel or changes in the grain size of sand on the surface of eddy sandbars have been more important in regulating sand transport in the post-dam Colorado River over longer, multi-year timescales. The results of this study show that this combined theory- and field-based approach can be used to deduce which environments in a complicated setting are the most important environments for regulating sediment transport. In the case of the regulated Colorado River in Marble and Upper Grand Canyons, suspended-sand transport has been regulated mostly by changes in the surface grain size of eddy sandbars.  相似文献   

11.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

12.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

13.
Rates of aerodynamic entrainment in a developing boundary layer   总被引:1,自引:0,他引:1  
Despite its significance for inception of grain transport by wind, the initial dislodgement of grains from a static surface by aerodynamic forces of drag and lift in the absence of grain collision has received little attention. This paper describes a series of wind-tunnel experiments in which the erosion of narrow strips of loose grains from the roughened surface of a flat plate exposed to a range of wind speeds was examined. The progressive downwind development of the boundary layer over the plate provided a range of airflow conditions which permitted systematic evaluation of grain entrainment rates arising from purely aerodynamic forces. Use of closely graded size fractions in flat, single grain layers resting on identical, fixed grain support eliminated the effects of surface irregularities and impacts from saltation. Results show that erosion of strips of loose grains develops with time according to an inverse exponential function in which the entrainment rate time constant relates to Shields dimensionless shear stress function. An empirical expression defining aerodynamic entrainment rate in terms of rate of strip erosion is derived and comparisons are made between present and published data. The need for additional data to resolve several questions raised by the present investigation is stressed. In addition, a simple, objective technique for accurate determination of the aerodynamic entrainment threshold of any loose, granular sediment is proposed.  相似文献   

14.
Thresholds of aeolian sand transport: establishing suitable values   总被引:4,自引:0,他引:4  
This paper assesses the practical use and applicability of the time fraction equivalence method (TFEM; Stout & Zobeck, 1996) of calculating a wind speed threshold for sand grain entrainment in field situations. A modification of the original method is used and is applied to 1 Hz measurements of wind speed and sand transport on a beach surface. Calculated grain entrainment thresholds are tested in terms of the percentage of sand transport events that they explain. It was found that the calculated thresholds offered a poor representation of the occurrence of saltation activity, explaining only about 50% of the measured transport events. Results are discussed in terms of system response time, wind speed measurement height, undetected events and sampling period. A shear velocity threshold for grain entrainment was also calculated, but this also failed to explain a high proportion of the sand transport events. The best results (67–91% of transport events explained) were found by calculating a threshold based on time‐averaged (≈ 40 s) wind velocity measurements. The applicability of a single threshold to a natural grain population is discussed. A natural surface is likely to possess a range of thresholds varying over short time scales in response to parameters such as grain rearrangement and changes in moisture conditions. The results show that calculated thresholds based on 40 s time‐averaged data consistently explain a high proportion of the recorded sand transport events. This is because such a time‐averaged approach accounts for higher frequency variability inherent in the sand transport system.  相似文献   

15.
An experimental study was undertaken in a large-scale wind tunnel to investigate sand particle dislodgement by wind over time in the absence of grain-bed collisions. Aerodynamic dislodgement was measured for six groups of sand particles under two known wind velocity profiles. The results show that the dislodgement rate for both fine and coarse particles decreases rapidly during the transition of the particle surface from a non-wind-worked condition to a wind-worked condition, and that the dislodgement rate continues to decay under a wind-worked condition even though the mean grain size of surface particles remains nearly the same. A previously developed theoretical method for calculating the number of particles left on the bed by wind was developed further. The derived method was used to calculate the time-decay of the dislodgement rate and the length of time required for the dislodgement rate to reach an equilibrium. The length of time for dislodgement rate to reach an equilibrium in this study is of the order of 10–15 min. This not only provides further observation of the second, long stage of aeolian sediment transport system development reported previously but also indicates a potentially large variation in the time-decay of transport rate under different conditions. The results indicate that the time-decay of the particle dislodgement rate is related to sorting processes. Because of the artificial method of preparation of the grain surface and the wind velocity profiles, the results of this study should be applied with caution to natural conditions.  相似文献   

16.
Two surface‐sediment sampling campaigns were carried out in November and December 2003, before and after a strong swell event, in the back‐reef area of a microtidal fringing reef on the western coast of La Reunion, Indian Ocean. The spatial distributions of the mean grain size, sorting and skewness parameters are determined, and grain‐size trend analysis is performed to estimate the main sediment transport pathways in the reef. The results of this analysis are compared with hydrodynamic records obtained in the same reef area during fair weather conditions and during swell events. Sediment dynamics inferred from the hydrodynamic records show that significant sediment erosion and transport occur only during swell events and under strongly agitated sea states. Under normal wave conditions, there is a potential for onshore sediment transport from the reef‐flat to the back‐reef, but this transport is episodic and occurs principally during high‐tide stages. Sediment transport trends revealed by the grain‐size trend analysis method show onshore and alongshore low‐energy transport processes that are in agreement with the hydrodynamic records. The grain‐size trend analysis method also provides evidence of an offshore high‐energy transport trend that could be interpreted as a real physical process associated with return flow from the shore to the reef. The impact of swell on the reef sediment dynamics is clearly demonstrated by onshore and alongshore transport. Considering different combinations of the vector transport trends computed through the grain‐size trend analysis approach, more realistic and pertinent results can be obtained by applying an exclusive OR operation (XOR case) on the vectors. The main results presented here highlight a trend towards the accumulation of carbonate sands in the back‐reef area of the fringing reef. These sediments can only be resuspended during extreme events such as storms or tropical cyclones.  相似文献   

17.
为了深入认识珠江现代入海物质在粤西陆架随海流迁移扩散的路径和沉积中心,利用Gao-Collins方法分析了粤西-琼东北近海1 515个站位的粒径趋势,并用210Pb法测定了8支柱样的现代沉积速率。结果表明,在粤西沿岸流和南海暖流这两个相向海流的共同作用下,珠江口外珠江来源的泥质沉积物的主体被限制在-50 m等深线以浅的内陆架。现代珠江入海物质能维持粤西陆架泥质沉积区0.1 cm/a左右的现代沉积速率。在川山群岛至海陵岛一带和琼州海峡东侧泥质区,分别受岛屿阻挡和逆时针中尺度涡旋的影响,形成了现代沉积中心。在沉积物不同粒级的来源和搬运方式存在差异的地方,粒径趋势分析结果可能主要反映的是粗颗粒沉积物的运移趋势,而非细颗粒沉积物的运移方向。  相似文献   

18.
沙洲是塑造分汊型河道最重要的形态因子,其发育与蚀退由于上游来水来沙变化呈现冲淤交替,从而影响分汊河道输水输沙平衡.通过单个卵石沙洲的淤积和冲刷试验,揭示不同加沙速率、粒径和来流量条件下,沙洲淤积和冲刷规律,并建立简化理论模型分析沙洲淤积速率.结果表明,4组加沙试验中,分流点后出现明显淤积下延至洲头,左汊和右汊成为输沙通道,洲尾中心线两侧的左右汊道有泥沙淤积,洲尾未出现淤积.7组清水冲刷试验中,洲头最先承受冲刷和蚀退,并沿洲体冲刷延伸,洲头冲刷的泥沙沿左右汊水流带到下游,洲尾未出现明显冲刷.卵石沙洲以洲头淤积为主导发育模式,泥沙粒径、洲头坡角和分流角是决定淤积速率的关键因子.  相似文献   

19.
An unresolved issue in the study of pressure solution in rock materials is the dependence of grain boundary structure and diffusive properties on the mutual orientation of neighbouring grain lattices. We report electrical measurements yielding the diffusivity of differently oriented halite–glass and halite–halite contacts loaded in the presence of brine. The halite–glass contact experiments show pressure solution of the halite and an effect of halite lattice orientation on grain boundary transport. Post-mortem observations show an orientation-dependent grain boundary texture controlled by the periodic bond chains in the halite structure. It is inferred that this texture determines the internal grain boundary structure and properties during pressure solution. In the halite–halite experiments neck-growth occurred, its rate depending on twist-misorientation. The results imply that deformation by pressure solution may lead to lattice-preferred orientation development, and that polymineralic rocks may deform faster at lower stresses than monomineralic rocks.  相似文献   

20.
Rate and mechanism in prograde metamorphism   总被引:5,自引:3,他引:5  
For a given rate of heat input into a prograde metamorphic sequence the extent of overstep of reaction temperature (disequilibrium) depends on the slowest of three sequential steps: (a) surface detachment of reactant minerals, (b) transport of material to the site of mineral growth, and (c) nucleation and growth of the product mineral. We have developed analytical expressions which enable determination of the rates of mineral dissolution and growth and of advective and diffusive mass transport during metamorphism. The dissolution and growth steps are linear functions of the driving force (– G) of the overall reaction while diffusion may take place either through a grain boundary fluid film or through the disorganized grain boundary itself.While little is known about heterogeneous nucleation, we argue from field observations that the rate of nucleation is not in general rate limiting. Additionally, if a fluid phase is present true grain boundary diffusion cannot be the mechanism which transports material over the mm to cm distances observed between reactant and product minerals.Simple models of contact (200° C temperature rise in 10,000 years) and regional (10° C per million years) metamorphic events lead to several conclusions concerning the rate determining step. Firstly, growth and dissolution are extremely rapid, dehydration reactions at 500° C going to completion in 2×102 years (contact) and 1×104 years (regional), if all solutes are readily transported. Secondly, the effect of substantial fracture flow of fluid is to divert the transporting medium away from the grain boundary region and hence to retard the transport step. Under most such circumstances it appears that diffusive transport of aqueous SiO2 or Mg species will be rate controlling. Despite this retardation of reaction rates, the extent of disequilibrium is rarely more than a few degrees C. Extensive disequilibrium (40° C) can only occur for reactions such as the andalusite sillimanite transformation which have very small entropy changes and which occur in rapid metamorphic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号