首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A case of new particle formation observed during dissipation stage of a thunderstorm at a tropical station, Pune, India on 3 June 2008 is reported. The flash rate and rainfall intensity increased as high as 110 flashes per 5 minutes and 150 mm hour − 1 respectively during the active stage of thunderstorm, and then gradually decreased during the dissipation stage. The number concentration of particles in the size range of 10–100 nm sharply increased from 350 particles cm − 3 to ∼8000 particles cm − 3 during the dissipation stage of a thunderstorm and grew to larger diameter subsequently. Observations suggest that the atmospheric conditions such as (i) reduced background aerosol concentration after heavy rain, (ii) high humidity condition, and (iii) increased ion concentration during the dissipation stage by corona discharges, favoured generation of new particles by ion-induced nucleation (IIN). Observations also suggest that generation of unipolar ions by corona discharges may be more favourable for IIN and subsequent growth of the particles.  相似文献   

2.
Monthly variations of lightning activity over typical land and oceanic regions of India were examined using satellite data (OTD) for a 5-year period (1995–1999). It is noted that the nature of variation between surface air maximum temperature (T max), thunderstorm days (Thn), and lightning flash count over ER and WR showed remarkable correspondence and sensitivity with each other on monthly time scale. As we move out of winter season and enter the monsoon season, via pre-monsoon season, the WR undergoes cooling relative to the ER in the range 0.1–1.2°C. As a result, WR experiences reduction of thunder days and lowering in flash count. This decrease in T max, Thn, and flash count over WR may also be associated with relatively small values of T θw and CAPE in comparison with similar values over ER during the monsoon season. Our observation of associated reduction in Thn and lightning count per 1°C cooling in surface air maximum temperature suggests reduction of ∼3.5 thunderstorms per station and 73 flashes. Comparison of lightning flashes between pairs of coastal, oceanic, arid-zone, hilly, and island stations reveals distinct relationship between climate regime and intensity of lightning activity. We may conclude the results of this study by saying that the overhead lightning activity is a clear reflection of the status of the underlying ground-earth properties. A close and continuous monitoring of lightning activity may be considered as a need of present day scientific studies.  相似文献   

3.
1961-2013年青海高原雷暴日数及雷电灾害变化特征研究   总被引:1,自引:0,他引:1  
孔尚成  戴升  王敏 《冰川冻土》2015,37(4):888-897
利用青海省48个测站雷暴、 雷电灾害监测资料, 分析了1961-2013年青海全省雷暴日数、 1997-2014年雷电灾害气候特征及其变化趋势. 结果表明: 青海省年雷暴日数在2.3~73.8 d之间, 两个高值中心分别在囊谦及祁连山的大通, 而两个低值中心在冷湖和西宁. 多雷区分布在三江源大部、 青海高原东北部大部, 而柴达木盆地为雷暴低发区. 青海高原雷暴日数分布特征为自东南向西北随纬度增加而逐渐减少, 各地区雷暴日数减少趋势非常显著, 三江源尤为突出. 全省大部分地区经历了增加-减少-增加-减少的演变规律; 各地雷暴的年内分布呈单峰型, 雷暴主要发生在5-9月, 主要集中在 6-8月, 最早出现在1月, 最晚出现在11月. 全省平均初雷日为4月16日, 最早初雷暴日为1月9日, 平均终雷暴日为9月15日, 最晚终雷暴日为11月28日. 青海省雷电灾害次数以微弱的次数增加, 直接经济损失、 人员伤亡也呈增加趋势, 家用、 办公电子电器设备损失呈增加趋势, 而电力设备、 建筑物、 交通、 金融等行业发生的次数、 损失呈下降趋势.  相似文献   

4.
In this paper, the ground motion at Guwahati city for an 8.1 magnitude earthquake on Oldham fault in the Shillong plateau has been estimated by stochastic finite-fault simulation method. The corresponding acceleration time histories on rock level at several sites in the epicentral region have been computed. These results are validated by comparing them with the estimates obtained from Medvedev–Sponheuer–Karnik (MSK) intensity observations of 1897 Shillong earthquake. Using the local soil parameters, the simulated rock level acceleration time history at Guwahati city is further amplified up to the ground surface by nonlinear site response analysis. The results obtained are presented in the form of peak ground acceleration (PGA) contour map. The maximum amplification for PGA over Guwahati city is as high as 2.5. Based on the simulated PGA, the liquefaction susceptibility at several locations in the city has been estimated. The results are presented in the form of contours of factor of safety against liquefaction at different depths below the ground surface. It is observed that over a large part of the Guwahati city, the factor of safety against liquefaction is less than one, indicating that the city is highly vulnerable to liquefaction in the event of this earthquake. The contour maps obtained can be used in identifying vulnerable areas and disaster mitigation.  相似文献   

5.
Extreme weather events such as cloudburst and thunderstorms are great threat to life and property. It is a great challenge for the forecasters to nowcast such hazardous extreme weather events. Mesoscale model (ARPS) with real-time assimilation of DWR data has been operationally implemented in India Meteorological Department (IMD) for real-time nowcast of weather over Indian region. Three-dimensional variational (ARPS3DVAR) technique and cloud analysis procedure are utilized for real-time data assimilation in the model. The assimilation is performed as a sequence of intermittent cycles and complete process (starting from reception, processing and assimilation of DWR data, running of ARPS model and Web site updation) takes less than 20 minutes. Thus, real-time nowcast for next 3 h from ARPS model is available within 20 minutes of corresponding hour. Cloudburst event of September 15, 2011, and thunderstorm event of October 22, 2010, are considered to demonstrate the capability of ARPS model to nowcast the extreme weather events in real time over Indian region. Results show that in both the cases, ARPS3DVAR and cloud analysis technique are able to extract hydrometeors from radar data which are transported to upper levels by the strong upward motion resulting in the distribution of hydrometeors at various isobaric levels. Dynamic and thermodynamic structures of cloudburst and thunderstorm are also well simulated. Thus, significant improvement in the initial condition is noticed. In the case of cloudburst event, the model is able to capture the sudden collisions of two or more clouds during 09–10 UTC. Rainfall predicted by the model during cloudburst event is over 100 mm which is very close to the observed rainfall (117 mm). The model is able to predict the cloudburst with slight errors in time and space. Real-time nowcast of thunderstorm shows that movement, horizontal extension, and north–south orientation of thunderstorm are well captured during first hour and deteriorate thereafter. The amount of rainfall predicted by the model during thunderstorm closely matches with observation with slight errors in the location of rainfall area. The temporal and spatial information predicted by ARPS model about the sudden collision/merger and broken up of convective cells, intensification, weakening, and maintaining intensity of convective cells has added value to a human forecast.  相似文献   

6.
Guwahati city is a major city in the northeastern region of India, which is growing rapidly in every aspect, particularly the major infrastructures like sports complex, educational institutions, flyovers, multiplex halls, etc. Two great earthquakes struck this region in 1897 and 1950, and large-scale liquefaction was reported in and around the Guwahati city. However, a detailed microzonation study for liquefaction is not available so far and is taken up accordingly. The liquefaction potential of the Guwahati city is estimated using hundred boreholes data located at different places of city with a design peak ground acceleration of 0.36?g. The results are presented in the form of factor of safety contours at several depths below the ground surface. These contour maps indicate that most of the sites in Guwahati city area are susceptible to liquefaction and hence this aspect has to be considered in earthquake-resistant design of foundations/structures in Guwahati city.  相似文献   

7.
Lightning is a natural hazard occurring frequently within the United States causing injury, damage, and death. To avoid this hazard, citizens need to self-mitigate their risk by taking action. The level of lightning safety knowledge must be known to determine if citizens have the tools to mitigate their risk. No studies have previously explored the status of lightning safety knowledge or the best way to educate about lightning safety. Therefore, the research community is unaware if citizens understand their risk and have the knowledge to mitigate their risk, or if current safety programs are effectively educating citizens. This study distributed two surveys to college students in Florida, Ohio, and Colorado. Following the pre-mode survey, students were shown videos, given brochures, or both with lightning safety information. A follow-up survey was then distributed. Participants were found to have a moderate level of lightning safety knowledge. Study areas of variable risk as well as past death rates were not found to affect the rate of knowledge. The presence of education programs were not affected by the variable risk. Misunderstood areas of lightning safety knowledge were associated mostly with the lightning and thunder relationship as well as safety before and after a thunderstorm. The education modes involving a video were the most effective at increasing knowledge. Gender displayed minor differences in gaining of lightning safety knowledge.  相似文献   

8.
Most U.S. metropolitan regions have experienced urban “sprawl,” or the outward spreading of urban development from city centers. For cities lying in areas prone to severe weather, the sprawl phenomenon exposes greater numbers of developed areas and inhabitants to a variety of thunderstorm hazards. This study’s principal goal is to determine how urbanization growth patterns affect a region’s vulnerability to severe weather events. To assess how sprawl may impact vulnerability to tornadoes, hail, and convective wind events, an analysis examining potential loss may be utilized. This study employs two distinct approaches to examine how the Atlanta area’s rapid and extensive development during the latter half of the twentieth Century has affected its overall potential exposure to thunderstorm hazards. First, archived census data are used to estimate overall impacts from hypothetical significant tornado, nontornadic convective wind, and hail events occurring at different time periods throughout several locations in the Atlanta metropolitan region. Second, economic factors are integrated into the analysis, which assists in determining how these hypothetical severe event scenarios may have changed from a cost standpoint if they were to occur in 2006 as opposed to 1960.  相似文献   

9.
The spatial–temporal patterns of cloud-to-ground (CG) lightning covering the period 2010–2015 over the northwest Iberian Peninsula were investigated. The analysis conducted employed three main methods: the circulation weather types developed by Jenkinson and Collison, the fit of a generalized additive model (GAM) for geographic variables, and the use of a concentration index for the ratio of lightning strikes and thunderstorm days. The main activity in the summer months can be attributed to situations with eastern or anticyclonic flow due to convection by insolation. In winter, lightning proves to have a frontal origin and is mainly associated with western or cyclonic flow situations which occur with advections of air masses of maritime origin. The largest number of CG discharges occurs under eastern flow and their hybrids with anticyclonic situations. Thunderstorms with greater CG lightning activity, highlighted by a higher concentration index, are located in areas with a higher density of lightning strikes, above all in mountainous areas away from the sea. The modeling of lightning density with geographic variables shows the positive influence of altitude and, particularly, distance to the sea, with nonlinear relationships due to the complex orography of the region. Likewise, areas with convex topography receive more lightning strikes than concave ones, a relation which has been demonstrated for the first time from a GAM.  相似文献   

10.
The present work deals with pre-monsoon thunderstorms over Bhubaneswar belonging to the state of Orissa, India. A Markovian approach has been adopted to discern the probabilistic behavior of the time series of the occurrence and non-occurrence of this hazardous weather event by introducing a dichotomy within the time series. After a painstaking analysis through chi-square tests, we have identified serial independence in a few years and first-order two-state Markovian dependence in a few years (2000, 2001, 2004 and 2006). Finally, for the years of first-order two-state Markovian dependence, it has been observed that the probability of occurrence or non-occurrence of thunderstorm gets higher if the state of the previous day is similar to that of the current day. Furthermore, the probability of getting non-thunderstorm day followed by non-thunderstorm day is higher than the probability of getting thunderstorm day followed by thunderstorm day. It has been also observed that the unconditional climatological probability of the occurrence of severe pre-monsoon thunderstorm implied by the Markov chain is closely in agreement with the observed relative frequencies. However, it could be revealed that Markov chain cannot, in general, be suggested as a predictive tool for pre-monsoon thunderstorms under study without investigating the serial dependence inherent in the time series.  相似文献   

11.
The pre-monsoon convective atmosphere over Kolkata (22.52°N, 88.37°E) during STORM field phase 2006–2008 is investigated using 12 UTC radiosonde data and thermodynamic indices. In the present study, an attempt has been made to assess the skill of various indices and parameters and to propose suitable threshold values in forecasting the occurrence of thunderstorm activity at Kolkata. The thermodynamic indices and parameters used in the present study are lifted index (LI), K index (KI), severe weather threat index (SWEAT), total totals index (TTI), convective available potential energy (CAPE), deep convection index (DCI), humidity index (HI), Boyden index (BI), dew point temperature at 850 hpa (DEW), relative humidity at 700 hpa (RH), and bulk Richardson number (BRN). Validation of the suggested threshold values of indices was conducted on the days of thunderstorm activity. It was found that one index alone cannot predict the occurrence of thunderstorm over Kolkata region. The present study suggests that the indices with highest skill for thunderstorm prediction are KI, DCI, SWEAT, DEW, HI, RH, LI, TTI, while the prediction efficiency is poor for CAPE, BRN, and BI. Observed values of these indices also reveal that scattered, multi-cellular thunderstorms are possible over Kolkata during pre-monsoon months.  相似文献   

12.
Lightning can threaten human and equipment safety. An indicator of sever convective weather, it plays an important role in atmospheric chemistry. The intensive studies have advanced the lightning forecast in the mesoscale weather models and its application in global climate models. There are three methods to forecast lightning by using numerical weather models: Numerical diagnosis prediction based on synoptic background filed statistical relations; Flash rate parameterization developed with the relationship between dynamical, microphysical and electrification processes, and The numerical weather model coupled with the explicit electrification and lightning parameterization schemes. In this paper, the research progress in lightning forecast with three above-mentioned methods were reviewed, and the future research issues on lightning forecast were also discussed.  相似文献   

13.
根据卫星、地面、飞机和气球的探测结果,TGFs和与雷暴、闪电过程有关的高能辐射现象可以大致分为2类:持续时间为毫秒量级的短时间高能辐射,一般认为多数可能与闪电有关;持续时间为几秒甚至更长的长时间高能辐射,一般认为可能与雷暴有关.对已有的TGFs和与雷暴、闪电有关的高能辐射现象的观测事实、理论探索和数值模拟方面的进展进行简要的回顾,并提出目前尚未解决的问题.  相似文献   

14.
Transient electric potential variations have been observed in a standing poplar tree equipped with electrodes up to a height of 10.5 m. The simultaneous signals at all electrodes have the same shape and their amplitude grows linearly with height, up to values of 10 to 50 mV. This corresponds to an electric current through the tree of the order of a few μA. The frequency of appearance of the signals does not depend on the season or on the time of the day. It is suggested that the potential variations are caused by the passage of thunderstorm clouds, of little activity, whose electrically charged base could induce charges in the ground and give rise to a current flowing through the tree and discharging at its top by point discharge.  相似文献   

15.
S. Chaudhuri  A. Middey 《Atmósfera》2013,26(1):125-144
Studying the boundary layer is imperative because severe weather in this portion of the atmosphere impacts on environment and various facets of national activities and affects the socioeconomic scenario of a region. Near surface boundary layer characteristics are investigated through the vertical variation of fluxes of heat, moisture, momentum, kinetic energy and Richardson number during the pre-monsoon season (April-May) at Kharagpur (22° 30’ N, 87° 20’ E) and Ranchi (23° 32’ N, 85° 32’ E) with 50 and 32 m tower data, respectively, on thunderstorm and non-thunderstorm days. The temporal variation of fluxes within the boundary layer and the kinetic energy at different logarithmic heights are observed to vary significantly between thunderstorm and non-thunderstorm days. The heat and momentum fluxes show a maximum peak while the moisture flux shows a sudden attenuation just before the occurrence of thunderstorms. The wind field depicts to play a crucial role at the inland station Kharagpur, which is in the proximity of the Bay of Bengal, compared to the station Ranchi, situated over hilly terrain on Chotanagpur. The micrometeorological study of the boundary layer reveals a significant finding pertaining to observe the passage of thunderstorms. It is observed that the ratio of the potential temperature (θ) and equivalent potential temperature (θe) remains confined within a critical range between 0.85 and 0.90 during the passage of thunderstorms.  相似文献   

16.
In this study, assessing the atmospheric instability, a new index, named here as MODIS (Moderate Resolution Imaging Spectroradiometer) profile index (MPI), has been statistically computed using temperature and moisture profile data from the real-time direct broadcast receiving systems installed at three places of India Meteorological Department. The training dataset has been prepared using MODIS temperature and moisture profile from the Aqua and Terra satellites over the Indian region for clear and convective weather conditions during the period of March to June 2011. The MPI values are produced at 5?×?5?km pixel resolution when at least 6 out of 9 FOVs from MODIS granules are found cloud free. If more than 3 FOVs are cloudy, the MPI has not been computed. The formulation of MPI and its comparison have been examined with well-established traditionally used K index, Lifted Index and total totals index derived from radiosonde profiles of temperature, pressure and humidity. It has been observed that in most of the cases, MPI has well correlated with those derived from ground truth observations. Therefore, spatially interpolated MPI can be utilized as an indicator for regional and location-specific forecast over the areas where radiosonde data are not available. The results also indicated that MPI can be used as a sensitive measure in very early stages of instability developments such as thunderstorm and rainfall because no other single stability index can provide a distinct threshold value for these events. Therefore, a single MPI value at a certain threshold can be treated as a stability index instead of other available indices. It is also being proposed that the inclusion of MPI as a stability parameter in physical or numerical modeling can improve accurate local severe storm predictions as a useful predictor and can also be used as diagnostic tools. The MPI can make a useful simulation using entire temperature and moisture profile data for the assessment of instability significantly to severe weather forecasting since other instability indices are often derived from a fixed pressure level quantity of vertical profile parameters.  相似文献   

17.
Great earthquakes in the past (e.g. 1869 Cachar earthquake, 1897 great Assam earthquake) have caused large scale damage and ground liquefaction in the Guwahati city. Moreover, seismologists are of opinion that a great earthquake might occur in the unruptured segment of the North-East Himalaya that is near to Guwahati city. In this paper, the liquefaction hazard due to these events have been simulated. The obtained results are in general agreement with the reported damages due to the past earthquakes. The central part of the city (i.e. Dispur, GS road), that has large thickness of soft soil deposit and shallow ground water table, is highly vulnerable to liquefaction.  相似文献   

18.
Strong ground motion parameters for the Guwahati city area, the capital city of the state of Assam in northeast India, are examined with the help of data accrued from local as well as worldwide network. Empirical relations are proposed for the ground motion parameters as a function of earthquake magnitude, distance, fault type, source depth and velocity characteristics of medium. Seismotectonics of the study region is examined, and a maximum credible earthquake M S ~ 8.0 is presumed from the Brahmaputra fault, the nearest source zone in the city area. Such great/major event may cause intensity of the of 9.3 with a probability of 0,95 in the Guwahati city during time interval of 500 years. Further, the design spectrum with 67 % confidence level and the synthetic three-component accelerograms are constructed. These results are much relevant and useful for structural engineering to mitigate seismic hazards in the region.  相似文献   

19.
The paper deals with the study of the physical and dynamical characteristics of a severe thunderstorm, which had occurred on April 5, 2015, at about 2100 UTC in the southwestern Bangladesh with location around 23.3–23.7N and 89.0–89.4E within the upazilas (sub-districts) of Kumarkhali and Shailkupa under the districts of Kushtia and Jhenaidah, respectively. The thunderstorm was associated with numerous hails of large size. More than 5000 birds which used to live in the bird sanctuary at Shailkupa and 22,011 birds in Chhaglapara Bird Sanctuary of Kumarkhali died as they were hit by the hails. Large hails also damaged crops, houses and forests over the thunderstorm hit areas. The evolution of the thunderstorm is studied by the WRF model, which is initialized using the National Centers for Environmental Prediction Final reanalysis data of 0000 UTC of April 5, 2015. The simulated results provide a basis to study the physical and dynamical characteristics of the thunderstorm, which are generally not identified by the meteorological observations which are too sparse. The model has captured a micro-low over Kumarkhali and its neighborhood, which favored the occurrence of the severe thunderstorm. The model simulated rainfall is about 26 mm near the place of occurrence, which matches well with the area where the reflectivity of hydrometeor is maximum. The convective available potential energy is found to be 1600 J kg?1 at 1730 UTC near the place of occurrence of the thunderstorm; this indicates high atmospheric instability over the thunderstorm location for the formation of the thunderstorm. The vertical velocity, convergence, cloud water mixing ratio and the ice water mixing ratio and their vertical extensions are found to be satisfactory and responsible for the occurrence of large hails associated with the thunderstorm.  相似文献   

20.
Kevin D. Ash 《GeoJournal》2017,82(3):533-552
Occupants of mobile or manufactured homes in the United States of America (USA) are highly exposed and susceptible to injury or death from tornado hazards. This problem is most pronounced in the southern and eastern USA, where tornadoes are frequent and mobile homes comprise upwards of 15 % of the housing stock. Recognizing this vulnerability, emergency management entities and the USA National Weather Service often recommend that mobile home residents evacuate to a nearby sturdy building or a specially-built tornado shelter when tornadoes threaten their communities. Previous research suggests, however, that only 30 % of residents follow this recommendation. In this research I aim to provide insight as to why many mobile home residents seldom undertake the suggested course of action for tornadoes. Using excerpts from twenty semi-structured interviews conducted during 2013 in South Carolina, I show that some individuals understand physical characteristics of tornadoes very differently than experts do. In addition, mobile home residents may also hold views that differ from experts about the ability of their homes to withstand tornadic winds and debris. Even if mobile home occupants pay close attention to thunderstorm hazards and might be willing to evacuate, they may prioritize protective actions for lightning or flash flooding over those recommended for tornadoes. Finally, the interviews reveal that there is much confusion over where to go, when to leave, and which route to take to arrive safely at a sheltering place for tornado hazards. I discuss some of the potential ramifications of the findings for theory and practice and suggest how future research might build on this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号