首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A palaeomagnetic study of the Ronda peridotites (southern Spain) has been carried out on 301 samples from 20 sites, spread along the three main outcrops of the ultrabasic complex: Ronda, Ojén and Carratraca massifs. Different lithologies and outcrops with different degrees of serpentinization have been sampled and analysed. Rock magnetic experiments have been carried out on a representative set of samples. These measurements include: Curie curves, hysteresis cycles, isothermal remanent magnetization (IRM) acquisition curves, thermal demagnetization of IRM imparted along three orthogonal axes and magnetic bulk susceptibility. Results indicate that magnetite is the main magnetic mineral present in the samples. Stepwise thermal and alternating field (AF) demagnetization of the natural remanent magnetization (NRM) reveals the presence of a characteristic remanent magnetization (ChRM) carried by magnetite, and in some sepentinized samples, a northward component with variable unblocking temperatures up to 250–575 °C. The appearance and the relative intensity of this northward component are strongly related to serpentinization degree. Taking into account the geological history of the peridotites, the ChRM has been considered as a thermo-chemical remanent magnetization acquired during the first serpentinization phase associated to the post-metamorphic cooling of this unit. On the basis of radiometric and fission track analysis, the ChRM is proposed to have been acquired between 20 and 17–18 Ma. The inclination of the mean direction of the ChRM statistically coincides with the expected inclination for stable Iberia during the Oligocene–Miocene. The declination of the ChRM differs from the expected declination, indicating clockwise block rotations of 41±12° about vertical axes since the cooling of the peridotites. When applying a compositional layering correction, the ChRM directions fail to pass this kind of fold test, thus, the compositional layering was not a palaeohorizontal during ChRM acquisition time. Normal and reversed polarities of the ChRM are reported, showing that at least one reversal of the Earth's magnetic field took place during ChRM acquisition process. A tentative polarity zonation within the peridotitic outcrops is also suggested. No evidence is found from these data for the previously proposed simultaneity between post-metamorphic cooling and rotation of the peridotites.  相似文献   

2.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

3.
SHRIMP U–Pb zircon dating of gabbro, anorthosite, trondhjemite and granodiorite from the Jinshajiang ophiolitic mélange of southwestern China provides geochronological constraints on the evolution of Paleo-Tethys. The ophiolitic mélange is exposed for about 130 km along the Jinshajiang River where numerous blocks of serpentinite, ultramafic cumulate, gabbro, sheeted dikes, pillow lavas and radiolarian chert are set in a greenschist matrix. A cumulate gabbro-anorthosite association and an amphibole gabbro have ages of 338 ± 6 Ma, 329 ± 7 Ma and 320 ± 10 Ma, respectively, which constrain the time of formation of oceanic crust. An ophiolitic isotropic gabbro dated at 282–285 Ma has the same age as a trondhjemite vein (285 ± 6 Ma) cutting the gabbro. These ages probably reflect a late phase of sea-floor spreading above an intra-oceanic subduction zone. At the southern end of the Jinshajiang belt, a granitoid batholith (268 ± 6 Ma), a gabbro massif (264 ± 4 Ma), and a granodiorite (adakite) intrusion (263 ± 6 Ma) in the ophiolitic mélange constitute a Permian intra-oceanic plutonic arc complex. A trondhjemite dike intruded serpentinite in the mélange at 238 ± 10 Ma and postdates the arc evolution of the Jinshajiang segment of Paleo-Tethys.  相似文献   

4.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   

5.
The Talaud Islands lie at the northern margin of the collision zone between the Sangihe and Halmahera island arc systems. Rock units on Talaud are Neogene marine strata, basalt and andesite, tectonic mélange, and ophiolite. The units are exposed in N–S trending belts that are commonly separated by faults. The marine strata consist of tuffaceous siltstone, sandstone, shale and marl. They are strongly deformed by west-verging folds with wavelengths of 20–500 m. Volcanic rocks of island arc affinity are exposed on the east coast of Karakelang Island and appear to be interbedded with the lowermost marine strata. Tectonic mélanges contain blocks of serpentinite, gabbro, basalt, red middle Eocene chert and limestone, and greywacke turbidites. The blocks range in length from a few millimetres to hundreds of metres, and are enclosed in a scaly clay matrix. Several mappable slabs of ophiolite are separated by Tertiary strata or mélange. The dismembered ophiolites consist of serpentized peridotite, gabbro, spilites and cherts. Locally, the mélanges and ophiolites are thrust over the younger sedimentary rocks along east-dipping faults. The dominant eastward dips of mélange foliation, the westward vergence of structures in the Neogene strata, the Eocene ages of the cherts, and the Miocene age of the strata overlying the ophiolite slabs suggest that the ophiolites are pieces of Eocene or older oceanic crust (derived from a mid-ocean ridge or back-arc basin) and upper mantle that were emplaced as thrust slices into the lower slope of a west-facing arc during the Miocene and have been uplifted during arc—arc collision.  相似文献   

6.
Permian to Cretaceous mélange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and mélange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the mélange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to σ1 are contracted in both the brittle and ductile regimes, layers at 30–45° to σ1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45° to σ1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within mélange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north–south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest–northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.  相似文献   

7.
Accretionary complexes record the histories of changes in physical properties of sediments from unlithified sediments to lithified rocks through the deformation processes along subduction interface. The trench sediment suffered various deformation of particulate flow, pressure solution deformation and cataclastic faultings from ductile to brittle regime during accretion in subduction zone. Tectonic mélange is a characteristic rock in on-land accretionary complexes. The dominant deformation mechanism of tectonic mélange formation is pressure solution on the basis of microscopic observation. However, brittle slickenlines are also commonly observed on mélange foliations at the outcrop scale. Although the slickenlines as a brittle failure is common on the surface of the pressure solution foliation, the relationship of their kinetic are still uncertain. Detailed observations of slickenlines suggest that they are formed by reactivation of the mélange foliations, which indicates that the slickenlines are developed after formation of block in matrix texture characterized in mélange. In addition, mélange foliations are cut by faults related to underplating of oceanic materials. Therefore, formation of slickenlines occur before underplating in a relatively deep portion along subduction interface. On the basis of P-T conditions reported from other parts of the Cretaceous Shimanto Belt, the mélange formation and underplating is inferred to have occurred around the seismic front or within the seismogenic zone. The change in deformation mechanisms from pressure solution to brittle failure may be the first change in physical properties from plastic to brittle around seismic front.  相似文献   

8.
PETER TURNER 《Sedimentology》1975,22(4):563-581
Carboniferous Limestones in the Craven Basin of northern England carry a stable natural remanent magnetization (NRM) the intensity of which is facies dependent. Dark argillaceous limestones are most strongly magnetized and pure, pale coloured limestones most weakly magnetized. Partial thermal and alternating field demagnetization suggest that magnetite is the principal carrier of the remanence although some haematite is present in the limestone. The presence of magnetite is confirmed by the low temperature transition, isothermal remanent magnetization (IRM build-up curves) and microprobe analysis. Partial demagnetization of IRM and ARM suggest that the magnetite is relatively coarse grained and in the multidomain state. There are no indications of pseudo-single domain behaviour but magnetite of this type cannot be excluded as a possible remanence carrier. A grain size estimate of 10–20 μm based on coercive force and remanent coercive force is compatible with the theoretical consideration of grain size. The limestones show a weak but marked magnetic susceptibility anisotropy. This anisotropy defines a depositional fabric which indicates that the magnetization is a depositional remanent magnetization (DRM). A DRM was acquired by each specimen before compaction and cementation and was preserved because of the reducing conditions which prevailed in the early diagenetic environments of the limestones.  相似文献   

9.
We reconstructed the accretion process related to Paleo-Tethys subduction recorded in northern Thailand, based on mélange and thrust structures, and metamorphic temperatures derived from illite crystallinity data. Mélange formation was characterized by hydrofracturing and cataclastic deformation, with mud injection under semi-lithified conditions followed by shear deformation and pressure solution. Illite crystallinity data suggest metamorphic temperatures below 250 °C during mélange formation. The combined structural and metamorphic data indicate that during mélange formation, the accretionary complex related to Paleo-Tethys subduction developed at shallow levels within an accretionary prism. Asymmetric shear fabrics in mélange indicate top-to-south shear. After correction for rotation associated with collision between the Indian and Eurasian continents, the trend of the Paleo-Tethys subduction zone is estimated to have been N80 °E. We conclude that the Paleo-Tethys was subducted northward beneath the Indochina Block from the Permian to Triassic.  相似文献   

10.
At Glenrock, near the southern end of the Peel Fault System, two fault zones are delineated by mélanges in which serpentinite is the main rock type.Protogranular and mylonitic textures are present in relicts of the parent peridotite and in blocks of massive pseudomorphic serpentinite that are surrounded by schistose serpentinite. In schistose serpentinite, the earliest foliation (S1) is defined, microscopically, by the parallel alignment of platy and fibrous serpentine minerals (lizardite and chrysotile) and by trains of magnetite and flattened serpentine pseudomorphs after olivine and pyroxene. It is considered that the schistosity formed perpendicular to the direction of maximum shortening, under conditions in which lizardite and chrysotile were ductile, but antigorite was not, by breakdown of pre-existing serpentine minerals and new growth of lizardite and chrysotile.Post-s1 foliations (S2andS3) superficially resemble crenulation cleavages in the field but, microscopically, show evidence of shear displacement and are referred to as microshear sets. They probably originated in the ductile-brittle transitional field of serpentine behaviour (Raleigh and Paterson, 1965).  相似文献   

11.
造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山—百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭—二叠纪的沟-弧体系,指示了红石山—百合山洋盆向南俯冲的极性。  相似文献   

12.
This paper reports on the complex relation between rock emplacement and remanence acquisition in tuffs deposited by pyroclastic density currents, disclosed by systematic measurements of the anisotropy of magnetic susceptibility and natural remanent magnetization (NRM). Thermal demagnetization shows that the NRM consists of two components with different blocking-temperature spectra. The direction of the low-temperature component is consistent with the geocentric axial dipole value, whereas the high-temperature component has dispersed directions. The magnetic fabric is oblate, the magnetic foliation is close to the bedding and the lineations are generally dispersed along a girdle within the foliation plane. The directions of the magnetic lineation and the high-temperature remanence component of individual specimens are close to each other. This correspondence suggests that the high blocking-temperature grains acquired a remanence aligned to their long dimension before deposition, while cooling within the explosive cloud and the moving pyroclastic current. Thereafter, during deposition, the traction processes at the base of the current oriented the grains along the flow direction and affected both fabric and high-temperature remanence. This NRM component results from mechanical orientation of previously magnetized grains and is thus detrital in origin. A second, thermal component was then acquired during the cooling of the low blocking-temperature grains after deposition. These results show that NRM in fine-grained pyroclastic rocks is affected by the Earth’s magnetic field as well as the emplacement processes and that magnetic fabric data are essential to unravel its complex nature.  相似文献   

13.
Ophiolites in different tectonic settings are underlain and overlain by characteristic rock units which bear similar relationships to each other and to the ophiolite. Consideration of these relationships in three settings, an active arc (Burma), a continental margin (Oman) and an island ridge-basin system (Cyprus) suggests that in all three settings they resulted from ophiolite detachment at a spreading ridge in a narrow oceanic basin with passive margins. In Burma and possibly in Oman and Cyprus, detachment was related to regional compressive stress associated with an earlier collision. Following detachment and loss of the spreading system, perhaps accompanied by deposition of stratiform sulphides, the rock relationships can be explained by subduction of the remnant oceanic basin beneath the ophiolite forming an island arc, accretion of continent-derived turbidites in front of and beneath the ophiolite, and collision of the ophiolite and overlying volcanic arc with a passive continental margin. Subsequent collision-related events include emplacement of serpentinite diapirs, rise of mud matrix melange and its extrusion as debris flows, elevation of a foreland ridge, and subsidence of a basin on the internal side of the ridge. In Taiwan, olistostromes with local ophiolite clasts in the Lichi mélange could be explained as debris flows of extruded mud-matrix mélange diapirs, generated by tectonic burial of wet sediments during collision-related back-thrusting.  相似文献   

14.
M. Westphal 《Tectonophysics》1973,17(4):323-335
The natural remanent magnetism of Permian redbeds and volcanics, together with Triassic spilits have been studied in the French part of the Alpine belt. The reliable directions obtained show a great similarity with the results obtained in other parts south of the Alps. They may be interpreted by an anti-clockwise rotation of Pelvoux and part of the Briançonnais zone of about 30°.

Abstract

Les aimantations rémanentes de roches Permiennes (grès et roches volcaniques) et Triasiques (spilites) des Alpes françaises ont été étudiées. Certaines directions d'aimantation trouvées sont semblables à celles obtenues avec des formations du même âge et provenant du sud des Alpes. Ces résultats suggèrent une rotation dans le sens contraire des aiguilles d'une montre du massif du Pelvoux et d'une partie de la zone briançonnaise de 30° à 45° environ.  相似文献   

15.
Forearc serpentinite mélange from the Hongseong suture, South Korea   总被引:1,自引:0,他引:1  
The signature of a prolonged subduction–accretion history from Paleozoic to Early Mesozoic is preserved within the dismembered serpentinite mélanges within the Hongseong suture. Here we present major and trace element data from the mafic fragments/blocks within the Baekdong serpentinite mélange revealing their arc-like tholeiite affinity within a suprasubduction zone tectonic setting. Chromian spinel compositions from the Baekdong hydrated mantle peridotite (serpentinite) are characterized by high Cr# (0.53–0.67) and Fe2+/Fe3+ ratio, medium Mg# (0.42–0.55), and Al2O3 contents (17–25 wt.%) indicating a forearc tectonic environment for the hydrated mantle peridotite. The estimated melting degree (> 17.6%) and FeO/MgO of the parental melt (0.9–1.3) are consistent with that of forearc magmas. SHRIMP zircon U–Pb ages from a high-grade mafic rock and an anorthosite from the study area give protolith ages of ~ 310 Ma and ~ 228 Ma, respectively. Zircons from an associated orthogneiss block within the mélange yield a Neoproterozoic crystallization age of ~ 748 Ma. These results, together with the recent SHRIMP zircon ages from other dismembered serpentinite mélanges within the Wolhyeonri complex, suggest that Paleozoic to Early Mesozoic subduction and subsequent collision events led to the exhumation of the hydrated forearc mantle peridotites from a metasomatized mantle wedge. The Hongseong region preserves important clues to a long-lived subduction system related to global events associated with the final amalgamation of the Pangaea supercontinent.  相似文献   

16.
The Tjårrojåkka Fe–Cu-prospect in northern Sweden is considered an example of a Fe-oxide Cu–Au (IOCG) deposit and is hosted in metamorphosed Paleoproterozoic volcanic and intrusive rocks. Rock samples from 24 outcrops were collected for petrophysical analysis (magnetic susceptibility, remanent magnetization, variation of magnetic susceptibility with temperature, Curie temperature and density). The major Cu-prospect in the area has been studied by magnetic and electron microprobe analyses of four selected rock samples. The samples are from an exploration well that intersects the main Cu-mineralized body.The magnetic analyses show that magnetite is the dominant magnetic mineral, while hematite and other Fe-minerals are present in minor amounts. The electron microprobe observations confirm the presence of magnetite and further indicate that hematite is an alteration product of magnetite. Moreover, microprobe observations indicate that Fe-sulfides are present in negligible amounts in the samples from the Tjårrojåkka area. The strong spatial relationship of Cu-minerals (e.g., chalcopyrite) and the oxidation of magnetite to hematite suggest that the presence of rocks with low magnetic susceptibility in areas dominated by high susceptibility rocks may be a signal of related Cu-prospects.  相似文献   

17.
Low‐T, intermediate to high‐P assemblages indicative of the prehnite–pumpellyite, greenschist and blueschist facies are preserved in mélange zones and slivers of oceanic crust within two major fault zones of the turbidite‐dominated Lachlan Orogen. In one of these fault zones (Governor Fault Zone), blueschists occur as Franciscan‐like blocks in a serpentinite/talc matrix that is interleaved with phyllites and slates, and structurally overlain by a fault slice or duplex of predominantly pillow basalt, chert, and turbidite. The blueschist metavolcanics are interpreted to have formed at < 450 °C and at a depth of approximately 21–27 km. The presence of blue amphibole in the blocks, rinds and matrix indicate that the metavolcanics were emplaced in the matrix prior to blueschist metamorphism. Blocks and matrix were partially exhumed, interleaved with tectonic slices of phyllite and slate, and subsequently folded at about 10–12 km depth, inferred from bo values of the dominant mica fabric in the phyllites and slates. Metamorphic P–T is highest in the structurally lowest slice (mélange zone) and lowest in the overlying ophiolitic fault slice, suggestive of an accretionary burial metamorphic pattern formed by underplating of the mélange. In the other fault zone (Heathcote Fault Zone), blueschists transitional to greenschist facies are interpreted to have formed at < 450 °C and at a depth of approximately 15–21 km. They occur as blocks in serpentinite/talc‐matrix mélange and are also associated with fault slices of oceanic crust. Textural and mineralogical evidence suggests that the protoliths for the blueschists in both fault zones were boninitic pillow lavas. The metamorphic facies and patterns, and the structural and lithological associations, can be interpreted in terms of disruption of oceanic crust and overlying sediments during subduction, and formation of serpentinite‐matrix mélange overprinted by blueschist metamorphism either prior to or during underplating of the mélange and duplex formation. The presence of blueschist metavolcanics indicate that these processes occurred at considerable depth. These interpretations have implications for the evolution of large‐scale fault zones in noncollisional, convergent oceanic settings.  相似文献   

18.
This paper compares features of unambiguous tectonic serpentinite mélanges (TSM) or serpentinite shear zones in the Coast Range ophiolite, Franciscan subduction complex, of coastal California and Sierra City Mélange of the northern Sierra Nevada of northeastern California with undisputed sedimentary serpentinite mélange (SSM) of the Great Valley Group (GVG) forearc basin deposits of coastal California, and with Franciscan serpentinite mélanges of disputed (sedimentary versus tectonic) origin. The GVG sedimentary serpentinite mélanges and disputed Franciscan serpentinite mélanges share strongly similar matrix textures and block-matrix relationships at scales from tens of meters or more to petrographic scale but differ significantly from serpentinite shear zones and TSM. This comparison suggests shared (non-diagnostic) and distinguishing features of TSM versus SSM. Internal bedding or foliation in blocks is oriented subparallel to mélange boundaries and matrix foliation for both TSM and SSM both may have strongly foliated matrix and both may feature localized shearing in matrix around block borders, especially if an SSM underwent significant post-depositional deformation. The same holds true for deformation and dismemberment of blocks, which is the block-forming and mixing mechanism in TSM but variably exhibited in SSM. In contrast only SSM have blocks or clasts whose internal foliation or bedding terminates abruptly along clast/block boundaries with a mismatch in mineralogy and/or lithology across such boundaries. Matrix foliation cuts blocks/clasts in TSM but not in SSM. SSM may show block/grain size grading but not TSM. SSM have exotic blocks and blocks may span a range of metamorphic grade, whereas TSM lack exotic blocks and blocks are isofacial.  相似文献   

19.
西藏米林地区湖积物的磁性特征及其古气候意义   总被引:1,自引:0,他引:1  
米林地区雅鲁藏布江三级河流阶地上发育厚达52.2m的晚更新世晚期深-浅湖相和滨-浅湖相沉积物, 显示当时米林地区存在一个规模较大的古堰塞湖.为了探讨该套湖积物记录的古气候、古环境信息, 在米林机场剖面采集了259块定向样品进行环境磁学测试和分析.其中, 磁组构分析表明86%的样品具有原生磁组构, 它们的最大磁化率主轴κ1指示米林古堰塞湖的物源经历了由南、北方向到西、北东再至西向这一大致顺时针方向变化的趋势, 可能与该区的差异隆升作用有关.研究剖面的天然剩余磁化强度 (NRM) 和体积磁化率 (κ) 变化曲线与沉积物的粒度、沉积相关系密切, 反映该区晚更新世晚期至少经历了4次显著的气候波动;同时, NRM、κ波动曲线能够很好地对应于格陵兰冰心GISP2的δ18O曲线IS1-IS6和IS8, 并记录了新仙女木事件 (YD) 和3次Heinrich事件 (H1, H2, H3) , 表明米林地区晚更新世晚期的气候变化受到全球气候系统影响.   相似文献   

20.
Several examples of fault-related pseudotachylites display a significantly higher initial magnetic susceptibility than their granitic host rock (10:1 to 20:1). These higher values are attributed to the presence of fine magnetic particles formed during melt quenching. The hysteresis properties of the particles indicate a single domain (SD) to pseudo single domain (PSD) magnetic grain size. The Curie temperature (Tc) of the magnetic particles is close to 580 °C.The natural remanent magnetization (NRM) of these pseudotachylites is also significantly higher than that of the host rock (up to 300:1). Such anomalously high remanence cannot be explained by a magnetization acquired in the Earth's magnetic field, regardless of pseudotachylite age.Ground lightning and other strong electric pulses can cause anomalously high NRM intensities. A ground lightning explanation seems unlikely to explain the systematically high NRM intensities, particularly in the case of recently exposed samples that have been collected from active quarries. Alternatively, high NRM intensities could be explained by earthquake lightning (EQL), a seismic phenomenon occasionally reported in connection with large magnitude earthquakes (M > 6.0).The coseismic electrical properties of the pseudotachylite vein–host rock system are characterized by (1) a core of molten material (high conductivity), (2) vapor-rich margins of thermally and mechanically fractured host rocks (low conductivity) and (3) moderately fractured to undeformed host rock (normal conductivity). Such a core conductor bordered by insulating margins is potentially responsible for the propagation of EQL pulses.The coseismic thermal history of pseudotachylite veins has been modeled in 2-D using conductive heat transfer equations. It shows that EQL can be recorded only during a brief time interval (less than 1 min) for a given vein thickness and host-rock temperatures. If the vein is too thick or if the host rock is too hot, the pseudotachylite remains above Tc after the electric pulse has lapsed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号