首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose chromospheric models of plages to explain profiles of the Ca ii H, K, λl8498, λ8542, and λ8662 lines described in Paper I. These models are consistent with boundary conditions imposed by the photosphere and the Lyman continuum. We find that increasing emission in these lines is consistent with a picture of increasing temperature gradient in the low chromosphere and the resulting increase in pressure and electron density at similar line optical depths. With this picture we suggest how to empirically determine the distribution of chromospheric parameters across the solar disk directly from Ca ii filtergrams. We also propose that the high density aspects of solar activity are produced by steep temperature gradients in the low chromosphere and thus by the enhanced heating mechanisms that steepen these gradients.  相似文献   

2.
Double pass photoelectric observations are presented of five Caii lines (H, K, 8498 Å, 8542 Å, and 8662 Å) in a number of solar plages of different degrees of activity, quiet regions, and a sunspot. The data are compared with previous work. All five lines show increasing emission together in plages and the least opaque of the infrared triplet lines appears to exhibit core emission prior to the more opaque members of the multiplet. The question of source function equality is considered and the differences and similarities among plage profiles and between plage and quiet profiles are shown qualitatively and quantitatively.Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy. Inc., under contract with the National Science Foundation.  相似文献   

3.
A systematic investigation was made of the K-corona immediately overlying the positions of the brightest and most isolated chromospheric plages during the years 1964–1967. In all cases, the corona was found to be enhanced with peak brightness proportional to the plage area. In the absence of plages, the K-coronal brightness remained at a quiet level which was essentially the same thoughout this part of the solar cycle.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
From a large sample of the Kodaikanal spectroheliograms in the Call K line we have studied the variations in the intensity of the network elements over two solar cycles and have estimated their contribution to the overall variability seen in the disc-averaged K line profiles. The relative contribution of the network elements and the bright points to the K-emission are of the order of 25% and 15% respectively. We have shown that the area of the network elements is anti-correlated with the solar activity, and it increases by about 24% during the solar minimum compared to the maximum period.  相似文献   

5.
Calculations performed with several models of the solar chromosphere support Ulmschneider's conclusion that relatively short period acoustic waves heat the low chromosphere in the region just above the temperature minimum. However, these same short period waves (10 period P80 s) are not able to maintain chromospheric temperatures at heights where 5000Å(normal) < 10-6. The calculations also show that an earlier conjecture stating that the H2 population might influence the non-LTE chromospheric H- population is probably not correct, due to lower values of the ratio n e/n H inferred from more recent observations. Finally, the calculations support Athay's contention that the Cayrel mechanism alone cannot produce the observed temperature rise, because the magnitude of the radiative cooling in the lines is too great.  相似文献   

6.
A sample of flares detected in 1980 with the Bent Crystal Spectrometer and the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission satellite has been analysed to study the upward motions of part of the soft X-ray emitting plasma. These motions are inferred from the presence of secondary blue-shifted lines in the Ca XIX and Fe XXV spectral regions during the impulsive phase of disk flares. Limb flares do not show such blue-shifted lines indicating that the direction of the plasma motion is mainly radial and outward. The temporal association of these upward motions with the rise of the thermal phase and with the impulsive hard X-ray burst, as well as considerations of the plasma energetics, favour the interpretation of this phenomenon in terms of chromospheric evaporation. The two measureable parameters of the evaporating plasma, emission measure and velocity, depend on parameters related to the energy deposition and to the thermal phase. The evaporation velocity is found to be correlated with the spectral index of the hard X-ray flux and with the rise time of the thermal emission measure of the coronal plasma. The emission measure of the rising plasma is found to be correlated with the total energy deposited by the fast electrons in the chromosphere by collisions during the impulsive phase and with the maximum emission measure of the coronal plasma.  相似文献   

7.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

8.
Sunspots are known to have large, low-lying magnetic canopies, i.e. horizontal magnetic fields overlying a field-free medium, that cover substantial fractions of active region plage. In this paper we consider the influence of such canopies on the inclination of plage magnetic fields. We find that for observations in spectral lines like 5250.2Å the neglect of a sunspot canopy when determining magnetic inclination angles of plage fields can introduce errors exceeding 5–10°. This is particularly true if the observations do not have high spatial resolution. Thus this effect may explain some of the measurements of substantially inclined fields in solar plages. Furthermore we find that the Fe I 15648 Å line is far superior in giving correct flux-tube inclinations in the presence of a sunspot magnetic canopy. Finally, the inversion of full Stokes profiles is shown to produce more reliable results than results obtained by considering only ratios of individual Stokes profile parameters.  相似文献   

9.
Vanlommel  P.  Goossens  M. 《Solar physics》1999,187(2):357-387
This paper studies the effect of a magnetic atmosphere on the global solar acoustic oscillations in a simple Cartesian model. First, the influence of the ratio of the coronal and the photospheric temperature τ and the strength of the magnetic field at the base of the corona Bc on the oscillation modes is studied for a convection zone-corona model with a true discontinuity. The ratio τ seems to be an important parameter. Subsequently, the discontinuity is replaced by an intermediate chromospheric layer of thickness L and the effect of the thickness on the frequencies of the acoustic waves is studied. In addition, nonuniformity in the magnetic field, plasma density and temperature in the transition layer gives rise to continuous Alfvén and slow spectra. Modes with characteristic frequencies lying within the range of the continuum may resonantly couple to Alfvén and/or slow waves.  相似文献   

10.
During the impulsive phase of many solar flares, blueshifted emission wings are observed on the soft X-ray spectral lines of highly excited ions that are produced in the flare plasma. This emission has been commonly interpreted as chromospheric evaporation of material from the footpoints of coronal loops by non-thermal particle beams, although the question of whether the bulk of the energy is carried by electrons or ions (protons) has been the subject of much debate. The precise temporal relationship between the onsets of the blueshifted emission and the hard X-ray bursts is particularly important in resolving the mechanism of energy transfer to the hot plasma in the impulsive phase. A sample of flares observed with the Bragg Crystal Spectrometer (BCS) onYohkoh has been analysed for blueshifted emission and the results compared with hard X-ray light turves obtained with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO). In some flares, the blueshifted emission precedes the onset of the hard X-rays by up to 100 s. There is no evidence for a temporal correlation between the maximum energy input to the hard X-ray bursts and the maximum blueshifted intensity. These results lend support to those models favouring protons as the dominant energy carrier in the impulsive phase of flares and are inconsistent with the hypothesis that the bulk of the energy resides in electron beatos, although some other energy input, while unlikely, cannot be completely eliminated.  相似文献   

11.
Disk-integrated solar chromospheric Caii K-line (3933.68 ) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Caii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's butterfly diagram, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.  相似文献   

12.
Chromospheric line-of-sight velocities are investigated in a small pore and its vicinity on the part of the active region NOAA 11024 with a size of 5″. We used Hα spectra of the active region and undisturbed atmosphere obtained with the French–Italian solar telescope THEMIS (Tenerife, Spain). Significant line-of-sight velocity time variations are found. At the beginning of the observations, the investigated region consisted of two areas of oppositely directed flows. The first area had a bright point in the vicinity of the pore and the second area covered the pore. There were upflows in the former and downflows in the latter. Oppositely directed flows appeared in both areas 2.7 min after the start of observations. In the part of the active region with a length of 2Mm, two oppositely directed flows within the same resolution elements, the so-called dual flows, were observed. The size of the area occupied by the dual flows varied quickly. The area shifted toward the pore. The velocity of upflows and downflows reached 25 km/s. The downflows in the first area lasted only for approximately 1 min. Upflows in the second area gradually covered the pore and lasted for 2 min. The resulting velocity field distribution can be due to a new small-scale magnetic flux emergence.  相似文献   

13.
On a possible explanation of chromospheric line asymmetries of solar flares   总被引:1,自引:0,他引:1  
M. D. Ding  C. Fang 《Solar physics》1996,166(2):437-440
We discuss the relationship between the chromospheric downward motions and the line asymmetries in solar flares by using a simple model. It is found that both the blue asymmetry and red asymmetry of the H line can be caused by downward motions, as long as the moving material is confined to different heights in the chromosphere. The Ca ii K line, however, mainly shows a red asymmetry. The results can qualitatively explain some observations.  相似文献   

14.
K. Ohki 《Solar physics》1975,45(2):435-452
Interferometric radio observations together with soft X-ray observations are presented here to show that during the growth phase of soft X-ray flares, a large mass increase occurs simultaneously with the creation of an X-ray hot region in the corona. The lack of an increase of radio flux from pre-flare active regions absolutely excludes the possibility of the coronal accumulation of low-temperature matter just prior to flare onset. Therefore we suggest a hypothesis that a large amount of hot matter, which contains almost the entire energy in the flare, is supplied from the chromosphere into the corona during each flare. Since even small flares produce coronal hot regions radiating thermal soft X-rays and microwaves, the formation of the hot region may be a basic process in most flares. Energy, created by some instability in the corona, travels by thermal conduction to the chromosphere where the dense matter is heated and subsequently expands into the corona, producing the observed hot region. Impulsive heating of the chromosphere by nonthermal electrons which simultaneously emit hard X-rays is not sufficient to be the energy source in our model. Slower heating, which supplies the flare more energy than that supplied in the impulsive phase, is required. If the temperature of the energy source in the corona exceeds 2 × 107 K, the conductive energy flux becomes sufficient to exceed the radiation loss from the chromosphere-corona transition region. This excess energy may cause the chromospheric gas expansion.  相似文献   

15.
A Cassegrain telescope with a resolution of 2 sec of arc was successfully flown in an Aerobee-150 rocket from White Sands Missile Range on October 20, 1965. A pinhole, 33 in diameter, was placed at the focus of the telescope, followed by a photo-ionization detector with a lithium-fluoride window. The instrument was kept pointed at the sun by a biaxial solar pointing control.Results indicate that in Lyman- the solar surface shows structures whose characteristic dimensions can be as small as 2 sec of arc, which corresponds to the limit of instrumental resolution. Larger structures with very sharp gradients have also been found. Intensity ratios between bright and dark areas are typically a factor of 1.7. Isophote maps of two small selected areas are discussed in this paper. The results were obtained in an undisturbed (free of plages) portion of the solar disk.Jointly sponsored by the Office of Naval Research and the National Science Foundation.  相似文献   

16.
A new spectroscopic method of deriving the three-dimensional information (escalation) worked out at the Pulkovo Observatory was applied to observations of solar faculae. The size of the investigated area was 70 × 18. Two series of spectra were obtained simultaneously in four spectral regions (H, D1,2, (Nai), H, and H, K (Caii)) with a quadruple-camera spectrograph attached to the second horizontal solar telescope at Pulkovo on 13 August, 1968.It was found from the analysis of the maps of brightness distribution in the cores of the lines and continuum that the facular emission lies in ropes which incline to the solar surface.  相似文献   

17.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

18.
We simulate dynamically the downward propagation of the chromospheric condensation, which originates following the chromospheric evaporation during solar flares. Our attention is concentrated on the lower part of the atmosphere. The top of the chromosphere (base of the transition region) is regarded as the top boundary. The condensation is mimicked by assuming an impulsive pressure increase at the top boundary. Using such a method, we compute in detail the evolution process of a condensation. The results show that the condensation can penetrate into the deeper atmosphere, though it becomes very weak at the later phase. Moreover, we also discuss the possibility that the mass motions in the condensation may cause the asymmetries of some spectral lines as observations have indicated.  相似文献   

19.
We study the evolution of the mass motion velocity in the chromospheric condensation, when it propagates into the deeper atmosphere. The condensation is represented by a shock-like structure. Its momentum equation can be solved after some approximations. The computations are carried out for two cases, i.e., the case that the gas pressure just behind the condensation front is constant and the case that the pressure increase at the top of the condensation is constant. The results show that the duration of the condensation in the second case is considerably longer than that in the first case. The most evident difference of the velocity evolution between the two cases appears in their later phase. A comparison of the results in this paper with the dynamic simulations indicates that the second case may be closer to the real situation.  相似文献   

20.
We report the observations of the solar chromosphere from a newly commissioned solar telescope at the incursion site near Pangong Tso lake in Merak (Leh/Ladakh). This new \(\hbox {H}_{\alpha }\) telescope at the Merak site is identical to the Kodaikanal \(\hbox {H}_{\alpha }\) telescope. The telescope was installed in the month of August 2017 at the Merak site. The telescope consists of a 20-cm doublet lens with additional re-imaging optics. A Lyot filter with 0.5 Å passband isolates the Balmer line of the hydrogen spectra to make the observations of the solar chromosphere. The observations made in \(\hbox {H}_{\alpha }\) wavelength delineates the magnetic field directions at the sunspot and the quiet regions. A CCD detector records the images of the chromosphere with a pixel resolution of 0.27\(^{\prime \prime }\) and covers 9.2\(^{\prime }\) field-of-view. This telescope has a good guiding system that keeps the FoV in the intended position. We report the development of control software for tuning the filter unit, control detector system, observations and calibration of the data to make it useful for the scientific community. Some preliminary results obtained from the Merak \(\hbox {H}_{\alpha }\) telescope are also presented. This high altitude facility is a timely addition to regularly obtain \(\hbox {H}_{\alpha }\) images around the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号